Programming Articles - Page 1065 of 3363

Python Pandas - How to select rows from a DataFrame by integer location

AmitDiwan
Updated on 16-Sep-2021 09:16:53

897 Views

To select rows by integer location, use the iloc() function. Mention the index number of the row you want to select.Create a DataFrame −dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]], index=['x', 'y', 'z'], columns=['a', 'b'])Select rows with integer location using iloc() −dataFrame.iloc[1] ExampleFollowing is the code − import pandas as pd # Create DataFrame dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]], index=['x', 'y', 'z'], columns=['a', 'b']) # DataFrame print"DataFrame...", dataFrame # select rows with loc print"Select rows by passing label..." print(dataFrame.loc['z']) # select rows with integer location using iloc print"Select rows by passing integer ... Read More

Python – Convert Suffix denomination to Values

AmitDiwan
Updated on 16-Sep-2021 09:21:11

227 Views

When it is required to convert the suffix denomination to values, the dictionary is iterated over and the ‘replace’ method is used to convert them to values.ExampleBelow is a demonstration of the samemy_list = ["5Cr", "7M", "9B", "12L", "20Tr", "30K"] print("The list is :") print(my_list) value_dict = {"M": 1000000, "B": 1000000000, "Cr": 10000000, "L": 100000, "K": 1000, "Tr": 1000000000000} my_result = [] for element in my_list: for key in value_dict: if key in element: val = ... Read More

Python Pandas - How to select rows from a DataFrame by passing row label

AmitDiwan
Updated on 16-Sep-2021 09:12:58

4K+ Views

To select rows by passing a label, use the loc() function. Mention the index of which you want to select the row. This is the index label in our example. We have x, y and z as the index label and can be used to select rows with loc().Create a DataFrame −dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]], index=['x', 'y', 'z'], columns=['a', 'b'])Now, select rows with loc. We have passed the index label “z” −dataFrame.loc['z'] ExampleFollowing is the code −import pandas as pd # Create DataFrame dataFrame = pd.DataFrame([[10, 15], [20, 25], [30, 35]], index=['x', 'y', 'z'], columns=['a', ... Read More

Python - Cast datatype of only a single column in a Pandas DataFrame

AmitDiwan
Updated on 16-Sep-2021 09:01:31

526 Views

To cast only a single column, use the astype() method. Let us first create a DataFrame with 2 columns. One of them is a “float64” type and another “int64” −dataFrame = pd.DataFrame( { "Reg_Price": [7000.5057, 1500, 5000, 8000, 9000.75768, 6000], "Units": [90, 120, 100, 150, 200, 130] } )Check the types −dataFrame.dtypes Let’s say we need to cast only a single column “Units” from int64 to int32. For that, use astype() −dataFrame.astype({'Units': 'int32'}).dtypesExampleFollowing is the code − import pandas as pd ... Read More

Python – Check Similar elements in Matrix rows

AmitDiwan
Updated on 16-Sep-2021 09:18:43

263 Views

When it is required to check for similar elements in a matrix row, a method is defined that take a matrix as parameter. The map method is used to covert the matrix to a tuple. The matrix values are iterated over and if the frequency is greater than 1, it is displayed on the console.ExampleBelow is a demonstration of the samefrom collections import Counter def find_dupes(my_matrix):    my_matrix = map(tuple, my_matrix)    freq_dict = Counter(my_matrix)    for (row, freq) in freq_dict.items():       if freq>1:          print (row) my_matrix = [[1, 1, 0, ... Read More

Python – Check alternate peak elements in List

AmitDiwan
Updated on 16-Sep-2021 09:06:52

201 Views

When it is required to check the alternate peak elements in a list, a function is defined that iterates through the list, the adjacent elements of the array are compared and depending on this, the output is displayed on the console.ExampleBelow is a demonstration of the samedef find_peak(my_array, array_length) :    if (array_length == 1) :       return 0    if (my_array[0] >= my_array[1]) :       return 0    if (my_array[array_length - 1] >= my_array[array_length - 2]) :       return array_length - 1    for i in range(1, array_length - 1) : ... Read More

Python – Extract Paired Rows

AmitDiwan
Updated on 16-Sep-2021 08:52:55

189 Views

When it is required to extract paired rows, a list comprehension and the ‘all’ operator is used.ExampleBelow is a demonstration of the samemy_list = [[10, 21, 34, 21, 37], [41, 41, 52, 68, 68, 41], [12, 29], [30, 30, 51, 51]] print("The list is :") print(my_list) my_result = [row for row in my_list if all(row.count(element) % 2 == 0 for element in row)] print("The result is :") print(my_result)OutputThe list is : [[10, 21, 34, 21, 37], [41, 41, 52, 68, 68, 41], [12, 29], [30, 30, 51, 51]] The result is : [[30, 30, 51, 51]]ExplanationA list ... Read More

Python – All replacement combination from other list

AmitDiwan
Updated on 16-Sep-2021 08:51:09

305 Views

When it is required to get the replacement combination from the other list, the ‘combinations’ method and the ‘list’ method is used.ExampleBelow is a demonstration of the samefrom itertools import combinations my_list = [54, 98, 11] print("The list is :") print(my_list) replace_list = [8, 10] my_result = list(combinations(my_list + replace_list, len(my_list))) print("The result is :") print(my_result)OutputThe list is : [54, 98, 11] The result is : [(54, 98, 11), (54, 98, 8), (54, 98, 10), (54, 11, 8), (54, 11, 10), (54, 8, 10), (98, 11, 8), (98, 11, 10), (98, 8, 10), (11, 8, ... Read More

Python - Convert one datatype to another in a Pandas DataFrame

AmitDiwan
Updated on 16-Sep-2021 08:55:23

422 Views

Use the astype() method in Pandas to convert one datatype to another. Import the required library −import pandas as pdCreate a DataFrame. Here, we have 2 columns, “Reg_Price” is a float type and “Units” int type −dataFrame = pd.DataFrame( { "Reg_Price": [7000.5057, 1500, 5000, 8000, 9000.75768, 6000], "Units": [90, 120, 100, 150, 200, 130] } ) Check the datatypes of the columns created above −dataFrame.dtypesConvert both the types to int32 −dataFrame.astype('int32').dtypes ExampleFollowing is the code −import pandas as pd # ... Read More

Python - Sort rows by Frequency of K

AmitDiwan
Updated on 16-Sep-2021 08:49:13

183 Views

When it is required to sort the rows by frequency of ‘K’, a list comprehension and ‘Counter’ methods are used.ExampleBelow is a demonstration of the samefrom collections import Counter my_list = [34, 56, 78, 99, 99, 99, 99, 99, 12, 12, 32, 51, 15, 11, 0, 0] print ("The list is ") print(my_list) my_result = [item for items, c in Counter(my_list).most_common() for item in [items] * c] print("The result is ") print(my_result)OutputThe list is [34, 56, 78, 99, 99, 99, 99, 99, 12, 12, 32, 51, 15, 11, 0, 0] The result is [99, 99, 99, ... Read More

Advertisements