
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 507 Articles for Pandas

201 Views
Assume, you have time series and the result for the first and last three days from the given series as, first three days: 2020-01-01 Chennai 2020-01-03 Delhi Freq: 2D, dtype: object last three days: 2020-01-07 Pune 2020-01-09 Kolkata Freq: 2D, dtype: objectTo solve this, we will follow the steps given below −SolutionDefine a series and store it as data.Apply pd.date_range() function inside start date as ‘2020-01-01’ and periods = 5, freq =’2D’ and save it as time_seriestime_series = pd.date_range('2020-01-01', periods = 5, freq ='2D')Set date.index = time_seriesPrint the first three days using data.first(’3D’) and save it ... Read More

113 Views
Result for generating dataframe maximum by a minimum of each row is0 43.000000 1 1.911111 2 2.405405 3 20.000000 4 7.727273 5 6.333333To solve this, we will follow the steps given below −Solution 1Define a dataframe with size of 30 random elements from 1 to 100 and reshape the array by (6, 5) to change 2-D arraydf = pd.DataFrame(np.random.randint(1, 100, 30).reshape(6, 5))Create df.apply function inside lambda method to calculate np.max(x)/np.min(x) with axis as 1 and save as max_of_min. It is defined below, max_of_min = df.apply(lambda x: np.max(x)/np.min(x), axis=1)Finally print the max_of_minExampleLet’s check the following ... Read More

1K+ Views
Assume, you have a dataframe and the result for second lowest value in each column as, Id 2 Salary 30000 Age 23To solve this, we will follow the steps given below −SolutionDefine a dataframeSet df.apply() function inside create lambda function and set the variable like x to access all columns and check expression asx.sort_values().unique()[1] with axis=0 to return second lowest value as, result = df.apply(lambda x: x.sort_values().unique()[1], axis=0)ExampleLet’s check the following code to get a better understanding −import pandas as pd df = pd.DataFrame({'Id':[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'Salary':[20000, 30000, 50000, ... Read More

396 Views
Assume, you have a dataframe and the minimum number of missing value column is, DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: IdTo solve this, we will follow the steps given ... Read More

447 Views
Assume, you have a date_range of dates and the result for the total number of business days are, Dates are: DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-06', '2020-01-07', '2020-01-08', '2020-01-09', '2020-01-10', '2020-01-13', '2020-01-14', '2020-01-15', '2020-01-16', '2020-01-17', '2020-01-20', '2020-01-21', '2020-01-22', '2020-01-23', '2020-01-24', '2020-01-27', '2020-01-28', '2020-01-29', '2020-01-30', '2020-01-31'], dtype='datetime64[ns]', freq='B') Total number of days: 23Solution 1Define a function as business_days()set pd.bdate_range() function start ... Read More

152 Views
Assume, you have a dataframe and the result for flatten records in C and F order as, flat c_order: [10 12 25 13 3 12 11 14 24 15 6 14] flat F_order: [10 25 3 11 24 6 12 13 12 14 15 14]SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.values.ravel() function inside set an argument as order=’C’ and save it as C_order, C_order = df.values.ravel(order='C')Apply df.values.ravel() function inside set an argument as order=’F’ and save it as F_order, F_order = df.values.ravel(order='F')ExampleLet’s check the following code to get a better understanding ... Read More

114 Views
Assume, you have a dataframe and the result for orderDict with list of tuples are −OrderedDict([('Index', 0), ('Name', 'Raj'), ('Age', 13), ('City', 'Chennai'), ('Mark', 80)]) OrderedDict([('Index', 1), ('Name', 'Ravi'), ('Age', 12), ('City', 'Delhi'), ('Mark', 90)]) OrderedDict([('Index', 2), ('Name', 'Ram'), ('Age', 13), ('City', 'Chennai'), ('Mark', 95)])SolutionTo solve this, we will follow the steps given below −Define a dataframeSet for loop to access all the rows using df.itertuples() function inside set name=’stud’for row in df.itertuples(name='stud')Convert all the rows to orderDict with list of tuples using rows._asdict() function and save it as dict_row. Finally print the values, dict_row = row._asdict() print(dict_row)ExampleLet’s check the ... Read More

185 Views
Assume, you have a dataframe and the result for adjusted and non-adjusted EWM are −adjusted ewm: Id Age 0 1.000000 12.000000 1 1.750000 12.750000 2 2.615385 12.230769 3 2.615385 13.425000 4 4.670213 14.479339 non adjusted ewm: Id Age 0 1.000000 12.000000 1 1.666667 12.666667 2 2.555556 12.222222 3 2.555556 13.407407 4 4.650794 14.469136SolutionTo solve this, we will follow the steps given below −Define a dataframeCalculate adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean().df.ewm(com=0.5).mean()Calculate non-adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean().df.ewm(com=0.5, adjust=False).mean()Exampleimport numpy as np import pandas as pd df ... Read More

270 Views
SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.interpolate funtion inside method =’linear’, limit_direction =’forward’ and fill NaN limit = 2df.interpolate(method ='linear', limit_direction ='forward', limit = 2Exampleimport pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5], "Age":[12, 12, 14, 13, None], "Mark":[80, 90, None, 95, 85], }) print("Dataframe is:",df) print("Interpolate missing values:") print(df.interpolate(method ='linear', limit_direction ='forward', limit = 2))OutputDataframe is: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0 Interpolate missing values: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 92.5 3 4.0 13.0 95.0 4 5.0 13.0 85.0

270 Views
Assume, you have a dataframe and the result for renaming the axis is,Rename index: index Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.rename_axis() function inside axis name as ‘index’ and set axis=1df.rename_axis('index',axis=1)Exampleimport pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5], "Age":[12, 12, 14, 13, None], "Mark":[80, 90, None, 95, 85], }) print("Dataframe is:",df) print("Rename index:") df = df.rename_axis('index',axis=1) print(df)OutputDataframe is: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0 Rename index: index Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0