Programming Articles - Page 1107 of 3366

Program to find out the minimum number of moves for a chess piece to reach every position in Python

Arnab Chakraborty
Updated on 30-Aug-2021 11:37:28

630 Views

Suppose, we have a chessboard and a special knight piece K, that moves in an L shape within the board. If the piece is in position (x1, y1) and if it moves to (x2, y2) the movement can be described as x2 = x1 ± a ; y2 = y1 ± b or x2 = x1 ± b ; y2 = y1 ± a ; where a and b are integer numbers. We have to find out the minimum number of moves for that chess piece to reach to reach position (n-1, n-1) on the chessboard from the position (0, ... Read More

How to make a multi-index in Pandas?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 10:11:46

333 Views

To make a multi-index in Pandas, we can use groupby with list of columns.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Print the index of DataFrame count.Use groupby to get different levels of a hierarchical index and count it.Print the mulitindex set in step 4.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df print "Default index: ", df.count().index df1 = df.groupby(["x", "y"]).count() ... Read More

Convert a Pandas DataFrame to a NumPy array

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 10:02:39

724 Views

To convert a Pandas DataFrame to a NumPy array, we can use to_numpy().StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Print the NumPy array of the given array, using df.to_numpy().Print the NumPy array of the given array for a specific column, using df['x'].to_numpy().Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df print "DataFrame to numpy is:", df.to_numpy() print "DataFrame to numpy is:", df['x'].to_numpy()OutputInput ... Read More

How to count the NaN values in a column in a Python Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:57:44

2K+ Views

To count the NaN values in a column in a Pandas DataFrame, we can use the isna() method with sum.StepsCreate a series, s, one-dimensional ndarray with axis labels (including time series).Print the series, s.Count the number of NaN present in the series.Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Find NaN count column wise.Print the count DataFrame.Example Live Demoimport pandas as pd import numpy as np s = pd.Series([1, np.nan, 3, np.nan, 3, np.nan, 7, np.nan, 3]) print "Input series is:", s count = s.isna().sum() print "NAN count in series: ", count df = pd.DataFrame(   ... Read More

Deleting a DataFrame row in Python Pandas based on column value

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:45:30

3K+ Views

To delete a DataFrame row in Pandas based on column value, we can take the following Steps −StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Here, we will delete the row from the DataFrame that contains 0 in its Z-column, using df=df[df.z != 0]Print the updated DataFrame, after deleting row based on column value.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df df ... Read More

How are iloc and loc different in Python Pandas?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:42:42

362 Views

Let's take an example to understand the difference between iloc and loc. Basically loc[0] returns the value present at 0 index, whereas iloc[0] returns the value present at the first location of a series.StepsCreate a one-dimensional ndarray with axis labels (including time series).Print the input series.Use loc[0] to print the value present at 0th index.Use iloc[0] to print the value present at the first location of the series table.Example Live Demoimport pandas as pd s = pd.Series(list("AEIOU"), index=[2, 1, 0, 5, 8]) print "Input series is:", s print "Value at index=0:", s.loc[0] print "Value at the 1st location of the series:", ... Read More

Writing a Pandas DataFrame to CSV file

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:39:48

4K+ Views

To write a Pandas DataFrame to CSV file, we can take the following Steps −StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Use df.to_csv to save the values of the DataFrame to a CSV (comma-separated values) file.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df df.to_csv("test.csv", sep='\t')OutputInput DataFrame is:    x   y  z 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0It will create a new file ("test.csv") and save the values of the DataFrame in it.

Use a list of values to select rows from a Pandas DataFrame

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:36:20

2K+ Views

To select the rows from a Pandas DataFrame based on input values, we can use the isin() method.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Create a list of values for selection of rows.Print the selected rows with the given values.Next, print the rows that were not selected.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame:", df values = [1, 2] print "Selected Rows:", ... Read More

Create a Pandas Dataframe by appending one row at a time

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:34:34

4K+ Views

To create a Pandas DataFrame by appending one row at a time, we can iterate in a range and add multiple columns data in it.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Iterate in a range of 10.Assign values at different index with numbers.Print the created DataFrame.Example Live Demoimport pandas as pd import random df = pd.DataFrame(    {       "x": [],       "y": [],       "z": []    } ) print "Input DataFrame:", df for i in range(10):    df.loc[i] = [i, random.randint(1, 10), random.randint(1, 10)] print "After ... Read More

How to change the order of Pandas DataFrame columns?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:30:30

328 Views

To change the order of DataFrame columns, we can take the following Steps −StepsMake two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Get the list of DataFrame columns, using df.columns.tolist()Change the order of DataFrame columns.Modify the order of columns of the DataFrame.Print the DataFrame after changing the columns order.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df cols = df.columns.tolist() cols = cols[-1:] + ... Read More

Advertisements