Convert Celsius Data Column to Fahrenheit in Pandas DataFrame

Vani Nalliappan
Updated on 25-Feb-2021 07:15:10

4K+ Views

The result for converting celsius to Fahrenheit as,  Id Celsius Fahrenheit 0 1  37.5    99.5 1 2  36.0    96.8 2 3  40.0    104.0 3 4  38.5    101.3 4 5  39.0    102.2To solve this, we will follow below approaches −Solution 1Define a dataframe with ‘Id’ and ‘Celsius’ column valuesApply df.assign function inside write lambda function to convert celsius values by multiplying (9/5)*df[celsius]+32 and assign it to Fahrenheit. It is defined below −df.assign(Fahrenheit = lambda x: (9/5)*x['Celsius']+32)ExampleLet’s check the following code to get a better understanding −import pandas as pd df = pd.DataFrame({'Id':[1, 2, 3, 4, 5], ... Read More

Append Magic Numbers from 1 to 100 in a Pandas Series

Vani Nalliappan
Updated on 25-Feb-2021 07:12:27

960 Views

The result for appending magic numbers from 1 to 100 is, magic number series: 0       1 1       10 2       19 3       28 4       37 5       46 6       55 7       64 8       73 9       82 10      91 11     100To solve this, we will follow the below approaches −Solution 1Create list comprehension to append 1 to 100 values to list ls.ls = [i for i in range(1, 101)]Apply ... Read More

Filter Palindrome Names in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 07:09:49

694 Views

Result for printing palindrome names are −Palindrome names are:    Id   Name 0   1   bob 2   3   hannahTo solve this, we will follow the below approaches −Solution 1Define a dataframeCreate list comprehension inside set for loop to access all the values from df[‘Name’] column using i variable and set if condition to compare i==i[::-1] then add i value to the listl = [ i for i in df['Name'] if(i==i[::-1])]Finally, check the list values present in the df[‘Name’] column using isin()df[df['Name'].isin(l)]ExampleLet’s check the following code to get a better understanding −import pandas as pd data = ... Read More

Localize Asian Timezone for a DataFrame in Python

Vani Nalliappan
Updated on 25-Feb-2021 07:06:49

286 Views

Assume, you have a time series and the result for localize asian time zone as, Index is: DatetimeIndex(['2020-01-05 00:30:00+05:30', '2020-01-12 00:30:00+05:30',                '2020-01-19 00:30:00+05:30', '2020-01-26 00:30:00+05:30',                '2020-02-02 00:30:00+05:30'],                dtype='datetime64[ns, Asia/Calcutta]', freq='W-SUN')SolutionDefine a dataframeCreate time series using pd.date_range() function with start as ‘2020-01-01 00:30’, periods=5 and tz = ‘Asia/Calcutta’ then store it as time_index.time_index = pd.date_range('2020-01-01 00:30', periods = 5, freq ='W', tz = 'Asia/Calcutta')Set df.index to store localized time zone from time_indexdf.index = time_indexFinally print the localized timezoneExampleLet’s check the ... Read More

Separate Date and Time from Datetime Column in Python Pandas

Vani Nalliappan
Updated on 25-Feb-2021 07:05:47

10K+ Views

Assume, you have datetime column in dataframe and the result for separating date and time as,    datetime    date          time 0 2020-01-01 07:00:00 2020-01-06 07:00:00 1 2020-01-02 07:00:00 2020-01-06 07:00:00 2 2020-01-03 07:00:00 2020-01-06 07:00:00 3 2020-01-04 07:00:00 2020-01-06 07:00:00 4 2020-01-05 07:00:00 2020-01-06 07:00:00 5 2020-01-06 07:00:00 2020-01-06 07:00:00To solve this, we will follow the below approaches −Solution 1Define a dataframe ‘datetime’ column using pd.date_range(). It is defined below, pd.DataFrame({'datetime':pd.date_range('2020-01-01 07:00', periods=6)})Set for loop d variable to access df[‘datetime’] column one by one.Convert date and time from for loop and save it as df[‘date’] ... Read More

Print Numeric Index Array with Sorted Distinct Values in Python

Vani Nalliappan
Updated on 25-Feb-2021 07:01:19

141 Views

Assume, you have a series and the numberic index with sorted distinct values are −Sorted distict values - numeric array index [2 3 0 3 2 1 4] ['apple' 'kiwi' 'mango' 'orange' 'pomegranate']To solve this, we will follow the steps given below −SolutionApply pd.factorize() function inside list of non-unique elements and save it as index, index_value.index, unique_value = pd.factorize(['mango', 'orange', 'apple', 'orange', 'mango', 'kiwi', 'pomegranate'])Print the index and elements. Result is diplayed without sorting of distinct values and its indexApply pd.factorize() inside list elements and set sort=True then save it as sorted_index, unique_valuesorted_index, unique_value = pd.factorize(['mango', 'orange', 'apple', 'orange', 'mango', ... Read More

Calculate Average of Rolling Window Size 3 in Python DataFrame

Vani Nalliappan
Updated on 25-Feb-2021 07:00:07

215 Views

Assume, you have a dataframe and the result for rolling window size 3 calculation is, Average of rolling window is:    Id Age  Mark 0 NaN NaN  NaN 1 1.5 12.0 85.0 2 2.5 13.0 80.0 3 3.5 13.5 82.5 4 4.5 31.5 90.0 5 5.5 60.0 87.5To solve this, we will follow the below approach −SolutionDefine a dataframeApply df.rolling(window=2).mean() to calculate average of rolling window size 3 isdf.rolling(window=2).mean()ExampleLet’s check the following code to get a better understanding −import pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, 4, 5, 6],                     ... Read More

Slice Substrings from Each Element in a Given Series using Python

Vani Nalliappan
Updated on 25-Feb-2021 06:58:31

143 Views

Assume, you have a series and the result for slicing substrings from each element in series as, 0    Ap 1    Oa 2    Mn 3    KwTo solve this, we will follow the below approaches −Solution 1Define a seriesApply str.slice function inside start=0, stop-4 and step=2 to slice the substring from the series.data.str.slice(start=0, stop=4, step=2)ExampleLet’s check the following code to get a better understanding −import pandas as pd data = pd.Series(['Apple', 'Orange', 'Mango', 'Kiwis']) print(data.str.slice(start=0, stop=4, step=2))Output0    Ap 1    Oa 2    Mn 3    KwSolution 2Define a seriesApply string index slice to start from 0 ... Read More

Pre-train a Customized Model

AmitDiwan
Updated on 25-Feb-2021 06:57:48

412 Views

A sequential model can be built using Keras Sequential API that is used to work with plain stack of layers. Here every layer has exactly one input tensor and one output tensor.A pre-trained model can be used as the base model on the specific dataset. This saves the time and resources of having to train the model again on the specific dataset.A pre-trained model is a saved network which would be previously trained on a large dataset. This large dataset would be a large-scale image-classification task. A pre-trained model can be used as it is or it can be customized ... Read More

Split String Based on Delimiter and Convert to Series in Python

Vani Nalliappan
Updated on 25-Feb-2021 06:55:36

787 Views

The result for splitting the string with ’' delimiter and convert to series as, 0    apple 1    orange 2    mango 3    kiwiTo solve this, we will follow the below approach −Solution 1define a function split_str() which accepts two arguments string and delimiterCreate s.split() function inside delimiter value and store it as split_datasplit_data = s.split(d)Apply split_data inside pd.Series() to generate series data.pd.Series(split_data)Finally, call the function to return the result.ExampleLet’s check the following code to get a better understanding −import pandas as pd def split_str(s, d):    split_data = s.split(d)    print(pd.Series(split_data)) split_str('apple\torange\tmango\tkiwi', '\t')Output0    apple 1   ... Read More

Advertisements