To get interactive plots, we need to activate the figure. Using plt.ioff() and plt.ion(), we can perform interactive actions with plot.StepsCreate fig and ax variables using subplots method, where default nrows and ncols are 1.Draw a line, using plot() method.Set the color of the line, i.e., orange.Stopped the interaction, using plt.ioff() method.To make the interaction plots, change the color of the line coordinate.Start the interaction, using plt.ion() method.ExampleTo use interactive plot in Ipython -In [1]: %matplotlib auto Using matplotlib backend: GTK3Agg In [2]: import matplotlib.pyplot as plt In [3]: fig, ax = plt.subplots() # Diagram will ... Read More
First, we can initialize the dictionary with col1 and col2, convert it into a data frame. After that, we can plot this data with ‘o’ and ‘rx’ style.StepsCreate a dictionary with Column 1 and Column 2 as the keys and Values are like i and i*i, where i is from 0 to 10, respectively.Create a data frame using pd.DataFrame(d); d created in step 1.Plot the data frame with ‘o’ and ‘rx’ style.To show the plot, use plt.show().Exampleimport pandas as pd from matplotlib import pyplot as plt d = {'Column 1': [i for i in range(10)], 'Column 2': [i*i for ... Read More
Using matplotlib.get_backend(), we can get the backend value.StepsImport matplotlib.To return the name of the current backend, use the get_backend() method.Exampleimport matplotlib print("Backend used by matplotlib is: ", matplotlib.get_backend())OutputBackend used by matplotlib is: GTK3Agg
We can iterate a plot using display.clear_output(wait=True), display.display(pl.gcf()) and time.sleep() methods in a loop to get the exact output.StepsPlot a sample (or samples) from the "standard normal" distribution using pylab.randn().Clear the output of the current cell receiving output, wait=False(default value), wait to clear the output until new output is available to replace it.Display a Python object in all frontends. By default, all representations will be computed and sent to the frontends. Frontends can decide which representation is used and how, using the display() method. pl.gcf helps to get the current figure.To sleep for a while, use time.sleep() method.Exampleimport time import ... Read More
First, we can create an image using imshow method, taking a harvest matrix. After that, we can mark those image pixels with some value.StepsCreate a list of subjects.Create a list of students.Create a harvest matrix.Create fig and ax variables using subplots method, where default nrows and ncols are 1.Display data as an image, i.e., on a 2D regular raster, with step 1 data.Get or set the current tick locations and labels of the X-axis, with the length of students.Get or set the current tick locations and labels of the Y-axis, with the length of subjects.Set X-axis tick labels of the ... Read More
Using imshow method, we can create an image with an input (5, 5) array dimension. After that, we can use the xticks and yticks method to mark the ticks on the axes.StepsReturn random floats in the half-open interval [5, 5) and interpolation='nearest'.Display data as an image, i.e., on a 2D regular raster, with step 1 data.Get or set the current tick locations and labels of the X-axis, using xticks method.Get or set the current tick locations and labels of the Y-axis, using yticks method.Use plt.show() to show the figure.Exampleimport matplotlib.pyplot as plt import numpy as np plt.imshow(np.random.random((5, 5)), interpolation='nearest') ... Read More
Using plt.xticks(x, labels, rotation='vertical'), we can rotate our tick’s label.StepsCreate two lists, x, and y.Create labels with a list of different cities.Adjust the subplot layout parameters, where bottom = 0.15.Add a subplot to the current figure, where nrow = 1, ncols = 2 and index = 1.Plot the line using plt.plot(), using x and y (Step 1).Get or set the current tick locations and labels of the X-axis. Pass no arguments to return the current values without modifying them, with x and label data.Set or retrieve auto-scaling margins, value is 0.2.Set the title of the figure at index 1, the ... Read More
Using plt.colorbar(ticks=np.linspace(-2, 2, 5)), we can create a discrete color bar.StepsReturn random floats in the half open interval, i.e., x, using np.random.random method.Return random floats in the half open interval, i.e., y, using np.random.random method.Return random integers from `low` (inclusive) to `high` (exclusive), i.e., z, using np.random.randint(-2, 3, 20) method.Set the X-axis label using plt.xlabel().Set the Y-axis label using plt.ylabel().Use the built-in rainbow colormap.Generate a colormap index based on discrete intervals.A scatter plot of *y* vs. *x* with varying marker size and/or color, with x, y and z are created (Steps 1, 2, 3).Create a colorbar for a ScalarMappable instance, ... Read More
Using plt.get_current_fig_manager() and mng.full_screen_toggle() methods, we can maximise a plot.StepsAdd a subplot to the current figure, where nrow = 1, ncols = 1 and index = 1.Create a pie chart using list [1, 2, 3] and pie() method.Return the figure manager of the current figure, using get_current_fig_manager() method. The figure manager is a container for the actual backend-depended window that displays the figure on the screen.Create an abstract base class to handle drawing/rendering operations using the full_screen_toggle() method.Use plt.show() to show the figure.Exampleimport matplotlib.pyplot as plt plt.subplot(1, 1, 1) plt.pie([1, 2, 3]) mng = plt.get_current_fig_manager() mng.full_screen_toggle() plt.show()OutputRead More
First, we can create two axes using the subplot method where nrows=2, ncols=1. That means, we can have two indices to plot the desired plot. We can use ax1.get_shared_x_axes().join(ax1, ax2) method for our plot.StepsCreate two lists of the numbers.Add a subplot to the current figure, ax1, where nrows = 2, ncols = 1, and index is 1 for ax1.Add a subplot to the current figure, ax2, where nrows = 2, ncols = 1, and index is 2 for ax2.Plot x and y using points that are created in step 1.Using get_shared_x_axes().join(ax1, ax2), return a reference to the shared axes Grouper ... Read More
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP