Improve Matplotlib Image Quality

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:16:42

7K+ Views

To improve matplotlib image quality we can use greater dot per inch i.e dpi value (greater than 600) and pdf or .eps format can be recommended.StepsSet the figure size and adjust the padding between and around the subplots.Make a 2D data raster using a np.array.Display data as an image, i.e., on a 2D regular raster.Save the current image using savefig() with dpi=1200 and .eps format, To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = np.array( [[0.1, 0.7, 0.6, 0.3], ... Read More

Annotate Subplots in a Figure with A, B, C using Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:16:14

2K+ Views

To annotate subplots in a figure with A, B and C using matplotlib, we can take the following stepsSet the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots, with nrows=1 and ncols=3.Make a 1D iterator over an array.Iterate each axes and display data as an image.In the loop itself, place text A, B and C.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt import string plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig, axs = plt.subplots(1, 3) axs = axs.flat for index, ax ... Read More

Simplest Way to Make Matplotlib in OSX Work in a Virtual Environment

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:15:36

135 Views

To make matplotlib in OSX work in a virtual environment, we can first create a virtual environment and then activate that created environment. Thereafter, install all the dependencies in that virtual environment.StepsOpen ubuntu terminal.apt-get install python-venvpython -m venv source /bin/activate

Plot Stacked Event Duration Using Python Pandas

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:15:04

469 Views

To plot a stacked event duration using Python Pandas, we can take the following stepsSet the figure size and adjust the padding between and around the subplots.Create a dataframe with lists of xmin and its corresponding xmax.Use hlines() method to plot a stacked event duration.To display the figure, use show() method.Exampleimport pandas as pd from datetime import datetime as dt from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame(dict(xmin=[dt.strptime('1994-07-19', '%Y-%m-%d'), dt.strptime('2006-03-16', '%Y-%m-%d'), dt.strptime('1980-10-31', '%Y-%m-%d'), dt.strptime('1981-06-11', '%Y-%m-%d'), dt.strptime('2006-06-28', '%Y-%m-%d')], ... Read More

Close Python Figure by Keyboard Input Using Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:14:27

2K+ Views

To close a Python figure by a keyboard input, we can use plt.pause() method, an input, and close() method.StepsSet the figure size and adjust the padding between and around the subplots.Create random t and y data points using numpy.Create a new figure or activate an existing figure using figure() method.Plot t and y data points using plot() method.Set the title of the plot.Redraw the current figure using draw() method.Run a true loop to pause the current figure.Take input from the user to go to the next statement.Use close() method to close the figure.Exampleimport numpy as np from matplotlib import pyplot ... Read More

Display NumPy Array with Pylab Imshow Using Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:14:10

1K+ Views

To display an np.array with imshow(), we can take the following stepsSet the figure size and adjust the padding between and around the subplots.Make a 2D data raster using an np.array.Display the data as an image, i.e., on a 2D regular raster.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = np.array( [[0.1, 0.7, 0.6, 0.3], [0.2, 0.6, 0.5, 0.2], [0.8, 0.3, 0.80, 0.01], [0.3, 0.4, 0.2, 0.1]] ) plt.imshow(data, interpolation="nearest", cmap="RdYlGn_r") plt.show()Output

Increase Space for X-Axis Labels in Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:13:48

25K+ Views

To increase the space for X-axis labels in Matplotlib, we can use the spacing variable in subplots_adjust() method's argument.StepsSet the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure using figure() method.Create x and y data points using numpy.Plot x and y using plot() method.Put xlabel using xlabel() method with LaTex expression.Use subplots_adjust() method to increase or decrease the space for X-axis labelsTo display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() x = ... Read More

Set DataFrame Column Value as X-Axis Labels in Python Pandas

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:13:31

9K+ Views

To set Dataframe column value as X-axis labels in Python Pandas, we can use xticks in the argument of plot() method.StepsSet the figure size and adjust the padding between and around the subplots.Make a dataframe using Pandas with column1 key.Plot the Pandas dataframe using plot() method with column1 as the X-axis column.To display the figure, use show() method.Exampleimport pandas as pd from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = pd.DataFrame({"column1": [4, 6, 7, 1, 8]}) data.plot(xticks=data.column1) plt.show()Output

Plot a Polar Color Wheel Based on a Colormap Using Python Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:13:13

1K+ Views

To plot a color wheel based on a colormap using Python/Matplotlib, we can use the colorbar class and can use copper colormap.StepsSet the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure using figure() method.Add an axes to the figure using add_axes() method.Set the direction of the axes.Linearly normalize the data using Normalize class.Draw a colorbar in an existing axes.Set the artist's visibility.Turn the X- and Y-axis off.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, cm, colors, colorbar plt.rcParams["figure.figsize"] = [7.50, 3.50] ... Read More

Connect Two Points on a 3D Scatter Plot in Python and Matplotlib

Rishikesh Kumar Rishi
Updated on 01-Jun-2021 12:12:56

7K+ Views

To connect two points on a 3D scatter plot, we can take the following stepsSet the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure using figure() method.Add an axes to the current figure as a subplot arrangement.Create lists for x, y and z.Plot x, y and z data points using scatter() methodTo connect the points, use plot() method with x, y and z data points with black color line.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig = ... Read More

Advertisements