Decrease Hatch Density in Matplotlib

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 10:33:17

805 Views

To decrease the hatch density in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a customized horizontal hatch class to override the density.Append the horizontal hatch class.Create a new figure or activate an existing figure.Add an 'ax1' to the figure as part of a subplot arrangement.Make lists of data points.Make a bar plot with x and ydata points, with hatch='o', color='green' and edgecolor='red'.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt, hatch plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True class MyHorizontalHatch(hatch.HorizontalHatch):    def ... Read More

Label Colorbars in Matplotlib Imshow Plot

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 10:31:06

5K+ Views

To give matplotlib imshow() plot colorbars a label, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create 5×5 data points using Numpy.Use imshow() method to display the data as an image, i.e., on a 2D regular raster.Create a colorbar for a ScalarMappable instance, im.Set colorbar label using set_label() method.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.rand(5, 5) im = plt.imshow(data, cmap="copper") cbar = plt.colorbar(im) cbar.set_label("Colorbar") plt.show()OutputRead More

Set Title Above Each Marker in Matplotlib

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 10:29:44

317 Views

To set a title above each marker which represents the same label in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x data points using Numpy.Create four curves, c1, c2, c3 and c4 using plot() method.Place a legend on the figure, such that the same label marker would come together.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, legend_handler plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-10, 10, 100) c1, = plt.plot(x, np.sin(x), ls='dashed', label='y=sin(x)') c2, ... Read More

Change Color and Add Grid Lines to a Python Matplotlib Surface Plot

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 10:27:06

1K+ Views

To change the color and add grid lines to a Python surface plot, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create x, y and h data points using numpy.Create a new figure or activate an existing figure.Get 3D axes object, with figure (from Step 3).Create a surface plot, with orange color, edgecolors and linewidth.Exampleimport numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.arange(-5, 5, 0.25) y = np.arange(-5, 5, 0.25) x, y = np.meshgrid(x, ... Read More

Find Matplotlib Style Name

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 10:23:19

202 Views

To find the matplotlib style name, we can take the following steps −import matplotlib.pyplot as pltprint(plt.style.library)Exampleimport matplotlib.pyplot as plt print(plt.style.library)Output{'bmh': RcParams({'axes.edgecolor': '#bcbcbc',    'axes.facecolor': '#eeeeee',    'axes.grid': True,    'axes.labelsize': 'large', 'axes.prop_cycle': cycler('color', ['#348ABD', '#A60628', '#7A68A6',       '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']),    'axes.titlesize': 'x-large',    'grid.color': '#b2b2b2',    'grid.linestyle': '--',    'grid.linewidth': 0.5,    'legend.fancybox': True,    'lines.linewidth': 2.0,    'mathtext.fontset': 'cm',    'patch.antialiased': True,    'patch.edgecolor': '#eeeeee',    'patch.facecolor': 'blue',    'patch.linewidth': 0.5,    'text.hinting_factor': 8,    'xtick.direction': 'in',    'ytick.direction': 'in'}), 'classic': RcParams({'_internal.classic_mode': True,    'agg.path.chunksize': 0, ... Read More

Get Interactive Plot of Pyplot in PyCharm

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 09:44:35

3K+ Views

To get an interactive plot of a pyplot when using PyCharm, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Set the background style.Plot the data on the axes.To display the figure, use show() method.Exampleimport matplotlib as mpl import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True mpl.use('Qt5Agg') plt.plot(range(10)) plt.show()Output

Increase Spacing Between Subplots in Matplotlib with subplot2grid

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 09:41:06

9K+ Views

To increase the spacing between subplots with subplot2grid, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Add a grid layout to place subplots within a figure.Update the subplot parameters of the grid.Add a subplot to the current figure.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True ax = plt.GridSpec(2, 2) ax.update(wspace=0.5, hspace=0.5) ax1 = plt.subplot(ax[0, :]) ax2 = plt.subplot(ax[1, 0]) ax3 = plt.subplot(ax[1, 1]) plt.show()Output

Multiple Overlapping Plots with Independent Scaling in Matplotlib

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 09:37:50

3K+ Views

To get multiple overlapping plots with independent scaling in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots.Plot a list of data points using plot() method on a seperate Y-axis and overlapping X-axis.Create a twin Axes sharing the X-axis.Plot a list of data points using plot() method on a seperate Y-axis and overlapping X-axis.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax1 = plt.subplots() ax1.plot([1, 2, 3, 4, 5], color='red') ... Read More

REST Client Testing Using Restito Tool

Vineet Nanda
Updated on 23-Sep-2021 09:37:11

310 Views

RESTREST (Representational State Transfer) is a modern technique of enabling communication between two software systems. One such system is known as REST Client; the other is known as REST Server. It is an architectural technique based on a stateless communications protocol, such as HTTP. It organizes or structures data in XML, YAML, and other machine-readable formats. However, JSON is mostly used. REST is based on objectoriented programming model.REST is data-driven, unlike SOAP which is function-driven. REST is also referred to as RESTful APIs or RESTful web services. The description format of REST services does not follow a standard. REST service ... Read More

Display a Sequence of Images Using Matplotlib

Rishikesh Kumar Rishi
Updated on 23-Sep-2021 09:19:09

3K+ Views

To display a sequence of images using Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a list of images that have to be drawn.Turn off the axes.Iterate the images and redraw over the axes.Take a pause after each draw.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True images = ['opera.jpg', 'mountain.jpg', '9.jpg'] plt.axis('off') img = None for f in images:    im = plt.imread(f)    if img is None:       img = plt.imshow(im)       plt.pause(0.5)    else:     ... Read More

Advertisements