To return MultiIndex with requested level removed using the level name, use the MultiIndex.droplevel() method and set the level (level name) to be removed as an argument.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Drop a specific level from MultiIndex. The level to be dropped is set as the level name in ... Read More
To return MultiIndex with requested level removed, use the MultiIndex.droplevel() method in Pandas. Set the level to be removed as an argument.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Drop a specific level. The level is 1 i.e. level 1 gets dropped” −print("Multi-index after dropping a level...", multiIndex.droplevel(1)) ExampleFollowing is the code ... Read More
To create a MultiIndex, use the from_arrays() method. However, to sort MultiIndex at a specific level, use the multiIndex.sortlevel() method in Pandas. Set the level as an argument. To sort in descending order, use the ascending parameter and set to False.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Sort MultiIndex. The specific ... Read More
In a profile histogram, each bin contains the mean of its entries. To plot profile histograms in Python, we can use the regplot method from Seaborn.StepsSet the figure size and adjust the padding between and around the subplots.Create x and y data points using numpy.Use seaborn.regplot to plot the data and a linear regress model fit. Use the parameter x_bins to bin the x variable into discrete bins. Use fit_reg=True to plot the regression model relating the x and y variables.To display the figure, use Show() method.Exampleimport numpy as np import seaborn as sns from matplotlib import pyplot as plt ... Read More
To create a MultiIndex, use the from_arrays() method. However, to sort MultiIndex at a specific level, use the multiIndex.sortlevel() method in Pandas. Set the level as an argument.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays:arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Sort MultiIndex. The specific level to sort is set as a parameter i.e. level 1 here −print("Sort MultiIndex ... Read More
To create a MultiIndex, use the from_arrays() method. However, to sort MultiIndex, use the multiIndex.sortlevel(). method in Pandas.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[2, 4, 3, 1], ['John', 'Tim', 'Jacob', 'Chris']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiInde −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Sort MultiIndex. The default sorts at level 0 −print("Sort MultiIndex...", multiIndex.sortlevel()) ExampleFollowing is the code −import pandas as pd # MultiIndex is a multi-level, or hierarchical, ... Read More
To create a DataFrame with the levels of the MultiIndex as columns, use the MultiIndex.to_frame() method. Substitute index level names using the name parameter.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']]The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays)Create a DataFrame with the levels of the MultiIndex as columns using to_frame(). Use the "name" parameter and pass the names to substitute index ... Read More
To create a DataFrame with the levels of the MultiIndex as columns, use the multiIndex.to_frame(). The index parameter is set False to avoid setting the index of the returned DataFrameAt first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Create a DataFrame with the levels of the MultiIndex as columns using to_frame(). Use the ... Read More
To create a DataFrame with the levels of the MultiIndex as columns, use the to_frame() method in Pandas.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Create a DataFrame with the levels of the MultiIndex as columns using to_frame() −dataFrame = multiIndex.to_frame() ExampleFollowing is the code −import pandas as pd # MultiIndex ... Read More
To convert a MultiIndex to an Index of Tuples containing the level values, use the MultiIndex.to_flat_index() method.At first, import the required libraries −import pandas as pdMultiIndex is a multi-level, or hierarchical, index object for pandas objects. Create arrays −arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']] The "names" parameter sets the names for each of the index levels. The from_arrays() is used to create a MultiIndex −multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))Convert the MultiIndex −print("Converting a MultiIndex to an Index of Tuples containing the level values...", multiIndex.to_flat_index())ExampleFollowing is the code −import pandas as pd # MultiIndex is a ... Read More
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP