Suppose we have an edge list where each items are holding (u, v) represents u is parent of v. We have to find the length of the longest path in the tree. The path length is 1 + number of nodes in that path.So, if the input is likethen the output will be 5, because the path is [1, 4, 5, 7], there are 4 nodes in total, so path length is 1 + 4 = 5.To solve this, we will follow these steps −g := adjacency list of the graph from given edge listd := a new mapDefine a ... Read More
To create a DataFrame from DateTimeIndex, use the datetimeindex.to_frame(). We have set the name parameter to override the name of the resulting column.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as S i.e. seconds −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='40S')Display DateTimeIndex −print("DateTimeIndex...", datetimeindex) The original index isn't set in the returned DataFrame using the 'False' parameter. To override the name of the resulting column, we have used the 'name' parameter −print("DateTimeIndex to DataFrame...", datetimeindex.to_frame(index=False, name = 'DateTimeData'))ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 ... Read More
To create a DataFrame from DateTimeIndex ignoring the index, use the DateTimeIndex.to_frame() method. Set the parameter index to False to ignore the index.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as S i.e. seconds −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='40S')Display DateTimeIndex −print("DateTimeIndex...", datetimeindex) Create a DataFrame from DateTimeIndex. The original index isn't set in the returned DataFrame using the 'False' parameter −print("DateTimeIndex to DataFrame...", datetimeindex.to_frame(index=False))ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 and frequency as S i.e. seconds # timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-10-18 ... Read More
To convert the DateTimeIndex to Series excluding the TimeZone, use the datetimeindex.tz_convert(None).to_series(). The tz.convert(None) is used to exclude the timezone.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as S i.e. seconds −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='40S')Display DateTimeIndex −print("DateTimeIndex...", datetimeindex) Convert DateTimeIndex to Series. Use the "tz_convert()" and set it to "None" to exclude the TimeZone −print("DateTimeIndex to series excluding the TimeZone...", datetimeindex.tz_convert(None).to_series())ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 and frequency as S i.e. seconds # timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, ... Read More
To convert the DateTimeIndex to Series, use the DateTimeIndex.to_series() method.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as S i.e. seconds. The timezone is Australia/Adelaide −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='40S')Convert DateTimeIndex to Series −print("DateTimeIndex to series...", datetimeindex.to_series())ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 and frequency as S i.e. seconds # timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='40S') # display DateTimeIndex print("DateTimeIndex...", datetimeindex) # display DateTimeIndex frequency print("DateTimeIndex frequency...", datetimeindex.freq) # Convert DateTimeIndex to Series print("DateTimeIndex to ... Read More
Suppose we have a binary matrix. We can first rearrange the columns as many times as we want, then find return the area of the largest submatrix containing only 1s.So, if the input is like100111101then the output will be 4, because we can arrange is like −100111110To solve this, we will follow these steps −n := row count of matrixm := column count of matrixans := 0for i in range 1 to n - 1, dofor j in range 0 to m - 1, doif matrix[i, j] is 1, thenmatrix[i, j] := matrix[i, j] + matrix[i-1, j]for each row in ... Read More
To return DatetimeIndex as object ndarray of datetime.datetime objects, use the datetimeindex.to_pydatetime() method.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as Y i.e. year −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, freq='2Y') Display DateTimeIndex −print("DateTimeIndex...", datetimeindex)Return DatetimeIndex as object ndarray −print("Return DatetimeIndex as object ndarray of datetime.datetime objects...", datetimeindex.to_pydatetime())ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 and frequency as Y i.e. year datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, freq='2Y') # display DateTimeIndex print("DateTimeIndex...", datetimeindex) # display DateTimeIndex frequency print("DateTimeIndex frequency...", datetimeindex.freq) # Return DatetimeIndex as ... Read More
To calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq, use the datetimeindex.to_perioddelta() method. Set the frequency using the freq parameter.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 7 and frequency as Y i.e. year −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, freq='2Y') Display DateTimeIndex −print("DateTimeIndex...", datetimeindex)Calculate TimedeltaArray of difference between index values and index converted to PeriodArray. We have set the Period frequency using the "freq" parameter with value 'M' −print("Convert DateTimeIndex to PeriodDelta...", datetimeindex.to_perioddelta(freq='M'))ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 7 and ... Read More
To convert DateTimeIndex to Period, use the datetimeindex.to_period() method in Pandas. The frequency is set using the freq parameter.At first, import the required libraries −import pandas as pdCreate a DatetimeIndex with period 5 and frequency as Y i.e. year −datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, freq='2Y') Display DateTimeIndex −print("DateTimeIndex...", datetimeindex)Convert DateTimeIndex to Period. We have set the frequency as Month using the "freq" parameter with value 'M' −print("Convert DateTimeIndex to Period...", datetimeindex.to_period(freq='M'))ExampleFollowing is the code −import pandas as pd # DatetimeIndex with period 5 and frequency as Y i.e. year # timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5, freq='2Y') ... Read More
Suppose we have three values n, total, and k. Now consider a list of size n whose sum is same as total and where the absolute difference between any two consecutive elements is at most 1. We have to find the maximum value at index k of such a list.So, if the input is like n = 5 total = 15 k = 3, then the output will be 4, because one possible list is like [3, 2, 3, 4, 3], maximum element that is found at index 3 is 4.To solve this, we will follow these steps −x := ... Read More
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP