- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Action of Commutator in DC Generator
The currents induced in the armature winding of a DC generator are alternating in nature. The action of commutator (called commutation) involves the change from a generated alternating current to a direct current.
Explanation
Consider a commutator consisting of a cylindrical metal ring cut into two segments C1 and C2 respectively separated by a thin sheet of mica. The commutator is mounted on the rotor shaft and insulated from it. The ends of the armature coil sides AB and CD are connected to the segments C1 and C2 respectively. Two stationary carbon brushes are placed on the commutator and carry current to the external load. Thus, with this arrangement, the commutator always connects the coil side under S-pole to the positive brush and under the N-pole to the negative brush.
Case 1
Here, the coil sides AB and CD are under N-pole and S-pole respectively (see the figure). The coil side AB is connected to the segment C1 which is connected to the point x of the load R. and the coil side CD is connected to the segment C2 which is connected to the point y of the load R. The direction of the current through the load is from y to x.
Case 2
After 180° rotation of the loop, the coil side AB is under the influence of S-pole and the coil side CD is under the influence of N-pole (see the figure). Thus, the currents in the coil sides now flow in the reverse directions but the segments C1 and C2 have also moved through 180° so that the segment C1 is now in contact with the positive brush and the segment C2 is in contact with negative brush.
In this way, the commutator has reversed the coil connections with the load i.e. the coil side AB is now connected to y terminal and the coil side CD is connected to x terminal. Therefore, the direction of the current through the load is again from y to x.
Thus, the alternating voltage generated in the armature winding will appear as the direct voltage across the brushes and hence across the load terminals.
- Related Articles
- The essential difference between an AC generator and a DC generator is that:$(a)$. AC generator has an electromagnet while a DC generator has a permanent magnet.$(b)$. DC generator will generate a higher voltage.$(c)$. AC generator will generate a higher voltage.$(d)$. AC generator has slip rings while the DC generator has a commutator.
- DC Generator
- Armature Reaction in a DC Generator
- DC Generator – Formulas and Equations
- Critical Resistance of a DC Shunt Generator
- Open Circuit Characteristics of a DC Generator
- Types of DC Generator – Separately Excited and Self-Excited DC Generators
- Difference between AC and DC Generator
- EMF Equation of DC generator – Derivation and Examples
- DC Generator – Demagnetising and Cross Magnetising Conductors
- Voltage Build-Up in a Self-Excited DC Generator
- Efficiency of DC Generator & Condition for Maximum Efficiency with Examples
- Induction Generator (Asynchronous Generator)
- What is the function of a commutator in an electric motor made?
- Swinburne’s Test of DC Machine – Testing of DC Machines
