Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Complete Graph Class in Javascript
Functions which have been commented out in this code. You can switch to those as well. We've also moved the Queue, Stack, and PriorityQueue classes in different modules that can be imported using either import statements or using require calls. Here is the complete implementation of the Graph class −
Example
const Queue = require("./Queue");
const Stack = require("./Stack");
const PriorityQueue = require("./PriorityQueue");
class Graph {
constructor() {
this.edges = {};
this.nodes = [];
}
addNode(node) {
this.nodes.push(node);
this.edges[node] = [];
}
addEdge(node1, node2, weight = 1) {
this.edges[node1].push({ node: node2, weight: weight });
this.edges[node2].push({ node: node1, weight: weight });
}
addDirectedEdge(node1, node2, weight = 1) {
this.edges[node1].push({ node: node2, weight: weight });
}
// addEdge(node1, node2) {
// this.edges[node1].push(node2);
// this.edges[node2].push(node1);
// }
// addDirectedEdge(node1, node2) {
// this.edges[node1].push(node2);
// }
display() {
let graph = "";
this.nodes.forEach(node => {
graph += node + "->" + this.edges[node].map(n => n.node).join(", ") + "
";
});
console.log(graph);
}
BFS(node) {
let q = new Queue(this.nodes.length);
let explored = new Set();
q.enqueue(node);
explored.add(node);
while (!q.isEmpty()) {
let t = q.dequeue();
console.log(t);
this.edges[t].filter(n => !explored.has(n)).forEach(n => {
explored.add(n);
q.enqueue(n);
});
}
}
DFS(node) {
// Create a Stack and add our initial node in it
let s = new Stack(this.nodes.length);
let explored = new Set();
s.push(node);
// Mark the first node as explored
explored.add(node);
// We'll continue till our Stack gets empty
while (!s.isEmpty()) {
let t = s.pop();
// Log every element that comes out of the Stack
console.log(t);
// 1. In the edges object, we search for nodes this node is
// directly connected to.
// 2. We filter out the nodes that have already been explored.
// 3. Then we mark each unexplored node as explored and push it
// to the Stack.
this.edges[t].filter(n => !explored.has(n)).forEach(n => {
explored.add(n);
s.push(n);
});
}
}
topologicalSortHelper(node, explored, s) {
explored.add(node);
this.edges[node].forEach(n => {
if (!explored.has(n)) {
this.topologicalSortHelper(n, explored, s);
}
});
s.push(node);
}
topologicalSort() {
// Create a Stack and add our initial node in it
let s = new Stack(this.nodes.length);
let explored = new Set();
this.nodes.forEach(node => {
if (!explored.has(node)) {
this.topologicalSortHelper(node, explored, s);
}
});
while (!s.isEmpty()) {
console.log(s.pop());
}
}
BFSShortestPath(n1, n2) {
let q = new Queue(this.nodes.length);
let explored = new Set();
let distances = { n1: 0 };
q.enqueue(n1);
explored.add(n1);
while (!q.isEmpty()) {
let t = q.dequeue();
this.edges[t].filter(n => !explored.has(n)).forEach(n => {
explored.add(n);
distances[n] = distances[t] == undefined ? 1 : distances[t] + 1;
q.enqueue(n);
});
}
return distances[n2];
}
primsMST() {
// Initialize graph that'll contain the MST
const MST = new Graph();
if (this.nodes.length === 0) {
return MST;
}
// Select first node as starting node
let s = this.nodes[0];
// Create a Priority Queue and explored set
let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);
let explored = new Set();
explored.add(s);
MST.addNode(s);
// Add all edges from this starting node to the PQ taking weights as priority
this.edges[s].forEach(edge => {
edgeQueue.enqueue([s, edge.node], edge.weight);
});
// Take the smallest edge and add that to the new graph
let currentMinEdge = edgeQueue.dequeue();
while (!edgeQueue.isEmpty()) {
// COntinue removing edges till we get an edge with an unexplored node
while (!edgeQueue.isEmpty() && explored.has(currentMinEdge.data[1])) {
currentMinEdge = edgeQueue.dequeue();
}
let nextNode = currentMinEdge.data[1];
// Check again as queue might get empty without giving back unexplored element
if (!explored.has(nextNode)) {
MST.addNode(nextNode);
MST.addEdge(currentMinEdge.data[0], nextNode, currentMinEdge.priority);
// Again add all edges to the PQ
this.edges[nextNode].forEach(edge => {
edgeQueue.enqueue([nextNode, edge.node], edge.weight);
});
// Mark this node as explored explored.add(nextNode);
s = nextNode;
}
}
return MST;
}
kruskalsMST() {
// Initialize graph that'll contain the MST
const MST = new Graph();
this.nodes.forEach(node => MST.addNode(node));
if (this.nodes.length === 0) {
return MST;
}
// Create a Priority Queue
let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);
// Add all edges to the Queue:
for (let node in this.edges) {
this.edges[node].forEach(edge => {
edgeQueue.enqueue([node, edge.node], edge.weight);
});
}
let uf = new UnionFind(this.nodes);
// Loop until either we explore all nodes or queue is empty
while (!edgeQueue.isEmpty()) {
// Get the edge data using destructuring
let nextEdge = edgeQueue.dequeue();
let nodes = nextEdge.data;
let weight = nextEdge.priority;
if (!uf.connected(nodes[0], nodes[1])) {
MST.addEdge(nodes[0], nodes[1], weight);
uf.union(nodes[0], nodes[1]);
}
}
return MST;
}
djikstraAlgorithm(startNode) {
let distances = {};
// Stores the reference to previous nodes
let prev = {};
let pq = new PriorityQueue(this.nodes.length * this.nodes.length);
// Set distances to all nodes to be infinite except startNode
distances[startNode] = 0;
pq.enqueue(startNode, 0);
this.nodes.forEach(node => {
if (node !== startNode) distances[node] = Infinity;
prev[node] = null;
});
while (!pq.isEmpty()) {
let minNode = pq.dequeue();
let currNode = minNode.data;
let weight = minNode.priority;
this.edges[currNode].forEach(neighbor => {
let alt = distances[currNode] + neighbor.weight;
if (alt < distances[neighbor.node]) {
distances[neighbor.node] = alt;
prev[neighbor.node] = currNode;
pq.enqueue(neighbor.node, distances[neighbor.node]);
}
});
}
return distances;
}
floydWarshallAlgorithm() {
let dist = {};
for (let i = 0; i < this.nodes.length; i++) {
dist[this.nodes[i]] = {};
// For existing edges assign the dist to be same as weight
this.edges[this.nodes[i]].forEach(
e => (dist[this.nodes[i]][e.node] = e.weight)
);
this.nodes.forEach(n => {
// For all other nodes assign it to infinity
if (dist[this.nodes[i]][n] == undefined)
dist[this.nodes[i]][n] = Infinity;
// For self edge assign dist to be 0
if (this.nodes[i] === n) dist[this.nodes[i]][n] = 0;
});
}
this.nodes.forEach(i => {
this.nodes.forEach(j => {
this.nodes.forEach(k => {
// Check if going from i to k then from k to j is better
// than directly going from i to j. If yes then update
// i to j value to the new value
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
});
});
});
return dist;
}
}
class UnionFind {
constructor(elements) {
// Number of disconnected components
this.count = elements.length;
// Keep Track of connected components
this.parent = {};
// Initialize the data structure such that all
// elements have themselves as parents
elements.forEach(e => (this.parent[e] = e));
}
union(a, b) {
let rootA = this.find(a);
let rootB = this.find(b);
// Roots are same so these are already connected.
if (rootA === rootB) return;
// Always make the element with smaller root the parent.
if (rootA < rootB) {
if (this.parent[b] != b) this.union(this.parent[b], a);
this.parent[b] = this.parent[a];
} else {
if (this.parent[a] != a) this.union(this.parent[a], b);
this.parent[a] = this.parent[b];
}
}
// Returns final parent of a node
find(a) {
while (this.parent[a] !== a) {
a = this.parent[a];
}
return a;
}
// Checks connectivity of the 2 nodes
connected(a, b) {
return this.find(a) === this.find(b);
}
}Advertisements