What is a series data structure in Pandas library in Python?

PythonServer Side ProgrammingProgramming

Series is a one-dimensional, labelled data structure present in the Pandas library. The axis label is collectively known as index.

Series structure can store any type of data such as integer, float, string, python objects, and so on. It can be created using an array, a dictionary or a constant value.

Let us see how an empty series can be created in Python −


 Live Demo

import pandas as pd
my_series = pd.Series()
print("This is an empty series data structure")


This is an empty series data structure
Series([], dtype: float64)


  • In the above code, ‘pandas’ library is imported and given an alias name as ‘pd’.

  • Next, series data structure is created by calling the ‘Series’ function.

  • It is then printed on the console.

Let us see how a series data structure can be created using array, without explicitly naming the index values.


 Live Demo

import pandas as pd
import numpy as np
my_data = np.array(['ab','bc','cd','de', 'ef', 'fg','gh', 'hi'])
my_series = pd.Series(my_data)
print("This is series data structure created using Numpy array")


This is series data structure created using Numpy array
0  ab
1  bc
2  cd
3  de
4  ef
5  fg
6  gh
7  hi
dtype: object


  • The required libraries are imported, and given alias names for ease of use.

  • The next step is to create a numpy array structure and passing values into it as data.

  • Next, an empty series data structure is created, and the previously created data is passed as a parameter to it.

  • The output is displayed on the console.

Note − When no values are given for index, default values from 0 are assigned to it.

Published on 11-Dec-2020 15:23:20