Theano - Conclusion

The Machine Learning model building involves intensive and repetitive computations involving tensors. These require intensive computing resources. As a regular compiler would provide the optimizations at the local level, it does not generally produce a fast execution code.

Theano first builds a computational graph for the entire computation. As the whole picture of computation is available as a single image during compilation, several optimization techniques can be applied during pre-compilation and that’s what exactly Theano does. It restructures the computational graph, partly converts it into C, moves shared variables to GPU, and so on to generate a very fast executable code. The compiled code is then executed by a Theano function which just acts as a hook for injecting the compiled code into the runtime. Theano has proved its credentials and is widely accepted in both academics and industry.

Kickstart Your Career

Get certified by completing the course

Get Started