- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Sudden Short Circuit of Three-Phase Alternator
Short circuits at the terminals of the unloaded alternators or synchronous generators are very rare. They generally occur due to insulation failure or accidental damage on some part of the power system supplied by the generator. Therefore, it is important to deal with the case of a 3-phase alternator delivering power to a load or to an infinite bus.
If a short circuit occurs across the armature terminals of the alternator, the short circuit armature current will pass through a sub-transient period, a transient period and finally will settle down to a steady-state condition. Also, when the short circuit occurs, the reactance of the machine changes from $𝑋_{𝑑}$ to $𝑋^{"}_{𝑑}$ . In order to satisfy the initial conditions of constant flux linkage, the excitation voltages must also change.
Figures 1, 2 and 3 show the equivalent circuits during sub-transient, transient and steady-state periods, respectively.
Refer the figures, the voltages $𝐸_{𝑖}, 𝐸^{′}_{𝑖}$ and $𝐸^{"}_{𝑖}$ and are the internal voltages and they are determined from the prefault conditions. If $𝑉_{0}$ is the terminal voltage of the machine and $𝐼_{𝑎0}$ is the prefault steady-state armature current, then
The voltage behind sub-transient reactance before fault is,
$$\mathrm{{𝐸^{"}_{𝑖}} = 𝑉_{0} + 𝑗𝐼_{𝑎0}{𝑋^{"}_{𝑑}} … (1)}$$
The voltage behind transient reactance before fault is,
$$\mathrm{{𝐸^{′}_{𝑖}} = 𝑉_{0} + 𝑗𝐼_{𝑎0}{𝑋^{′}_{𝑑}} … (2)}$$
The voltage behind synchronous reactance before fault is,
$$\mathrm{𝐸_{𝑖} = 𝐸_{𝑓} = 𝑉_{0} + 𝑗𝐼_{𝑎0}𝑋_{𝑑} … (3)}$$
Therefore, the sub-transient current during short-circuit is,
$$\mathrm{𝐼^{"} =\frac{𝐸^{"}_{𝑖}}{𝑋^{"}_{𝑑}}… (4)}$$
The transient current during short circuit is,
$$\mathrm{𝐼^{′} =\frac{𝐸^{′}_{𝑖}}{𝑋^{′}_{𝑑}}… (5)}$$
The steady-state short circuit current is,
$$\mathrm{𝐼_{𝑠𝑠} =\frac{𝐸_{𝑖}}{𝑋_{𝑑}}=\frac{𝐸_{𝑓}}{𝑋_{𝑑}}… (6)}$$
Hence, the short-circuit current of the machine is given by,
$$\mathrm{𝐼_{𝑠𝑐}(𝑡) = (𝐼^{"} − 𝐼^{′})𝑒^{−𝑡⁄𝜏^{"}_{d}} + (𝐼^{′} − 𝐼_{𝑠𝑠})𝑒^{−𝑡⁄𝜏^{'}_{d}} + 𝐼_{𝑠𝑠}}$$
$$\mathrm{\Rightarrow\:𝐼_{𝑠𝑐}(𝑡) =\left(\frac{𝐸^{"}_{𝑖}}{𝑋^{"}_{𝑑}}-\frac{𝐸^{′}_{𝑖}}{𝑋^{′}_{𝑑}}\right)𝑒^{−𝑡⁄𝜏^{"}_{d}}+ \left(\frac{𝐸^{′}_{𝑖}}{𝑋^{′}_{𝑑}}- \frac{𝐸_{𝑖}}{𝑋_{𝑑}}\right)𝑒^{−𝑡⁄𝜏^{'}_{d}}+\frac{𝐸_{𝑖}}{𝑋_{𝑑}}… (7)}$$
Where,
$$\mathrm{{𝜏^{′}_{𝑑}} = \frac{𝑋^{'}_{𝑑}}{𝑋_{𝑑}}{𝜏^{′}_{𝑑0}}}$$
$$\mathrm{{𝜏^{"}_{𝑑}} = \frac{𝑋^{"}_{𝑑}}{𝑋^{′}_{𝑑}}{𝜏^{"}_{𝑑0}}}$$
- Related Articles
- Significance of Short Circuit Ratio of Alternator (Synchronous Machine)
- Three-Phase to Twelve-Phase Transformers: Circuit Diagram and Phasor Diagram
- Short-Circuit Test and Open-Circuit Test on a Three-Winding Transformer
- Open Circuit and Short Circuit Test of Transformer
- Difference between Open Circuit and Short Circuit
- Advantages of Three-Phase System
- Basics of Three-Phase Electricity
- Equivalent Circuit and Phasor Diagram of Synchronous Generator or Alternator
- Short-circuit evaluation in JavaScript
- Short Circuit Assignment in JavaScript
- Difference between Single-Phase and Three-Phase Transformer
- Three-Phase Electric Power
- Types of AC Generators – Single Phase and Three Phase AC Generator
- Difference between Single-Phase and Three-Phase Power Supplies
- Short Circuit Transient in Synchronous Machine
