
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - fcluster() Method
The SciPy fcluster() method is a part of heirarchical clustering which identifies the classes of cluster(linkage matrix) with the help of unsupervised machine learning.
Below are some real-life purposes of this method −
- It identifies the customer segmentation.
- The most popular is genetic clustering which is used in health care sector for defining its genetic similarity.
- It identifies the similarity of images based on demographic region.
Syntax
Following is the syntax of the SciPy fcluster() method −
fcluster(Z, t, criterion)
Parameters
This method accepts the following parameters −
- Z: This define the linkage matrix.
- t: This parameter defines the number of cluster can be requested.
- criterion: The parameter is used to define the type of flat clustering such as distance, inconsistent, and maxdists. All these clusters can be written in the form of string.
Return value
This method returns the n-dimensional array.
Example 1
Following is the basic example that illustrate the usage of fcluster() method.
from scipy.cluster.hierarchy import linkage, fcluster import numpy as np data = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [1, 0]]) Z = linkage(data, 'ward') clusters = fcluster(Z, t=10, criterion='distance') print(clusters)
Output
The above code produces the following result −
[1 1 1 1 1]
Example 2
This program specifies the exact number of clusters which is t = 3 and set the maxclust to the criterion that partitioned the given data into exact 3 clusters.
from scipy.cluster.hierarchy import linkage, fcluster import numpy as np data = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [1, 0]]) Z = linkage(data, 'ward') res_cluster = fcluster(Z, t=3, criterion='maxclust') print(res_cluster)
Output
The above code produces the following result −
[1 2 2 3 1]
Example 3
Below the program sets the value 'inconsistent' to the criterion within the fcluster() method and this usage define the inconsistency of matrix. So, this identifies the clusters which having less inconsistency with the value.
from scipy.cluster.hierarchy import linkage, fcluster, inconsistent import numpy as np data = np.array([[11, 12], [13, 14], [15, 16], [17, 18], [11, 10]]) Z = linkage(data, 'ward') R = inconsistent(Z) res_cluster = fcluster(Z, t=1.15, criterion='inconsistent') print(res_cluster)
Output
The above code produces the following result −
[1 1 1 1 1]