- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - cophenet() Method
The SciPy cophenet() method calculates the cophenetic distance between each observation of the hierarchical cluster. These clusters are defined using linkage which shows the splitting of clusters.
The Cophenetic distances calculate the distance between two points, illustrated by a dendrogram. A dendrogram shows the hierarchical relationship between the objects.
Syntax
Following is the syntax of the SciPy cophenet() method −
cophenet(Z, pdist(data))
Parameters
This method accepts the two parameters −
- Z: This paramter store the linkage() method.
- pdist(data): It is used to define the pairwise distribution of data.
Return value
This method return the float value as result.
Example 1
Following is basic program that illustrate the usage of SciPy cophenet() method.
import numpy as np
from scipy.cluster.hierarchy import linkage, cophenet
from scipy.spatial.distance import pdist
# given data for 2D points
data = np.array([[10, 20], [20, 30], [30, 40], [50, 60], [80, 90]])
# hierarchical clustering
Z = linkage(data, method='single')
# cophenetic correlation coefficient
c, d = cophenet(Z, pdist(data))
print(f"The value of cophenetic correlation coefficient: {c}")
Output
The above code produces the following output −
Cophenetic Correlation Coefficient: 0.8355044182110838
Example 2
This program shows the value of cophenetic correlation cofficient using the complete linkage method.
import numpy as np
from scipy.cluster.hierarchy import linkage, cophenet
from scipy.spatial.distance import pdist
# given data for 2d points
data = np.array([[10, 20], [20, 30], [30, 40], [50, 60], [80, 90]])
# perform hierarchical clustering using the 'complete' linkage method
Z_complete = linkage(data, method='complete')
# cophenetic correlation coefficient
c_complete, d_complete = cophenet(Z_complete, pdist(data))
print(f"The value of cophenetic correlation coefficient (using complete method): {c_complete}")
Output
The above code produces the following output −
The value of cophenetic correlation coefficient (using complete method): 0.7173095078886984
Example 3
Below the program illustrates the value of cophenetic correlation coefficient using the average linkage method.
import numpy as np
from scipy.cluster.hierarchy import linkage, cophenet
from scipy.spatial.distance import pdist
# given data for 2D points
data = np.array([[11, 22], [22, 33], [33, 44], [55, 66], [88, 99]])
# given data for five dimensional point
data_high_dim = np.random.rand(10, 5)
# hierarchical clustering
Z_high_dim = linkage(data_high_dim, method='average')
# cophenetic correlation coefficient
c_high_dim, d_high_dim = cophenet(Z_high_dim, pdist(data_high_dim))
print(f"The value of cophenetic correlation coefficient (high-dimensional): {c_high_dim}")
Output
The above code produces the following output −
The value of cophenetic correlation coefficient (high-dimensional): 0.6727006277242108