
- SciPy - Home
- SciPy - Introduction
- SciPy - Environment Setup
- SciPy - Basic Functionality
- SciPy - Relationship with NumPy
- SciPy Clusters
- SciPy - Clusters
- SciPy - Hierarchical Clustering
- SciPy - K-means Clustering
- SciPy - Distance Metrics
- SciPy Constants
- SciPy - Constants
- SciPy - Mathematical Constants
- SciPy - Physical Constants
- SciPy - Unit Conversion
- SciPy - Astronomical Constants
- SciPy - Fourier Transforms
- SciPy - FFTpack
- SciPy - Discrete Fourier Transform (DFT)
- SciPy - Fast Fourier Transform (FFT)
- SciPy Integration Equations
- SciPy - Integrate Module
- SciPy - Single Integration
- SciPy - Double Integration
- SciPy - Triple Integration
- SciPy - Multiple Integration
- SciPy Differential Equations
- SciPy - Differential Equations
- SciPy - Integration of Stochastic Differential Equations
- SciPy - Integration of Ordinary Differential Equations
- SciPy - Discontinuous Functions
- SciPy - Oscillatory Functions
- SciPy - Partial Differential Equations
- SciPy Interpolation
- SciPy - Interpolate
- SciPy - Linear 1-D Interpolation
- SciPy - Polynomial 1-D Interpolation
- SciPy - Spline 1-D Interpolation
- SciPy - Grid Data Multi-Dimensional Interpolation
- SciPy - RBF Multi-Dimensional Interpolation
- SciPy - Polynomial & Spline Interpolation
- SciPy Curve Fitting
- SciPy - Curve Fitting
- SciPy - Linear Curve Fitting
- SciPy - Non-Linear Curve Fitting
- SciPy - Input & Output
- SciPy - Input & Output
- SciPy - Reading & Writing Files
- SciPy - Working with Different File Formats
- SciPy - Efficient Data Storage with HDF5
- SciPy - Data Serialization
- SciPy Linear Algebra
- SciPy - Linalg
- SciPy - Matrix Creation & Basic Operations
- SciPy - Matrix LU Decomposition
- SciPy - Matrix QU Decomposition
- SciPy - Singular Value Decomposition
- SciPy - Cholesky Decomposition
- SciPy - Solving Linear Systems
- SciPy - Eigenvalues & Eigenvectors
- SciPy Image Processing
- SciPy - Ndimage
- SciPy - Reading & Writing Images
- SciPy - Image Transformation
- SciPy - Filtering & Edge Detection
- SciPy - Top Hat Filters
- SciPy - Morphological Filters
- SciPy - Low Pass Filters
- SciPy - High Pass Filters
- SciPy - Bilateral Filter
- SciPy - Median Filter
- SciPy - Non - Linear Filters in Image Processing
- SciPy - High Boost Filter
- SciPy - Laplacian Filter
- SciPy - Morphological Operations
- SciPy - Image Segmentation
- SciPy - Thresholding in Image Segmentation
- SciPy - Region-Based Segmentation
- SciPy - Connected Component Labeling
- SciPy Optimize
- SciPy - Optimize
- SciPy - Special Matrices & Functions
- SciPy - Unconstrained Optimization
- SciPy - Constrained Optimization
- SciPy - Matrix Norms
- SciPy - Sparse Matrix
- SciPy - Frobenius Norm
- SciPy - Spectral Norm
- SciPy Condition Numbers
- SciPy - Condition Numbers
- SciPy - Linear Least Squares
- SciPy - Non-Linear Least Squares
- SciPy - Finding Roots of Scalar Functions
- SciPy - Finding Roots of Multivariate Functions
- SciPy - Signal Processing
- SciPy - Signal Filtering & Smoothing
- SciPy - Short-Time Fourier Transform
- SciPy - Wavelet Transform
- SciPy - Continuous Wavelet Transform
- SciPy - Discrete Wavelet Transform
- SciPy - Wavelet Packet Transform
- SciPy - Multi-Resolution Analysis
- SciPy - Stationary Wavelet Transform
- SciPy - Statistical Functions
- SciPy - Stats
- SciPy - Descriptive Statistics
- SciPy - Continuous Probability Distributions
- SciPy - Discrete Probability Distributions
- SciPy - Statistical Tests & Inference
- SciPy - Generating Random Samples
- SciPy - Kaplan-Meier Estimator Survival Analysis
- SciPy - Cox Proportional Hazards Model Survival Analysis
- SciPy Spatial Data
- SciPy - Spatial
- SciPy - Special Functions
- SciPy - Special Package
- SciPy Advanced Topics
- SciPy - CSGraph
- SciPy - ODR
- SciPy Useful Resources
- SciPy - Reference
- SciPy - Quick Guide
- SciPy - Cheatsheet
- SciPy - Useful Resources
- SciPy - Discussion
SciPy - average() Method
The SciPy average() method is used to perform the task of arithmetic mean on a distance matrix. In data analysis, this method helps us to create a hierarchy of clusters from data points.
This method refers the distance between two clusters as the average distance between all pairs of data points, where one point is from the first cluster and the other is from the second cluster.
Syntax
Following is the syntax of the SciPy average() method −
average(y)
Parameters
This method accepts a single parameter −
- y: This parameter store the distance of array matrix.
Return value
This method returns the linkage matrix(result).
Example 1
Following is the SciPy average() method to perform the task of distance matrix.
import numpy as np from scipy.cluster.hierarchy import average, dendrogram import matplotlib.pyplot as plt # Distance matrix y = np.array([0.6, 0.2, 0.3, 0.5, 0.4, 0.8]) # Perform average linkage clustering result = average(y) # Plot the dendrogram plt.figure(figsize=(6, 4)) dendrogram(result) plt.title('Dendrogram - Average Linkage') plt.xlabel('indexes') plt.ylabel('Distance') plt.show()
Output
The above code produces the following result −

Example 2
Below the example operate the task of average linkage clustering on random dataset.
import numpy as np from scipy.spatial.distance import pdist from scipy.cluster.hierarchy import average, dendrogram import matplotlib.pyplot as plt # generate random data data = np.random.rand(4, 2) # calculate the distance matrix y = pdist(data, metric='euclidean') # average linkage clustering result = average(result) # plot the dendrogram plt.figure(figsize=(6, 4)) dendrogram(Z) plt.title('Dendrogram - Average Linkage on Random Data') plt.xlabel('indexes') plt.ylabel('Distance') plt.show()
Output
The above code produces the following result −

Example 3
To obtain the average clustering linkage, it use dendrogram() to visualize the data and generate the expected outcome. Here, we mention the metric type as 'cityblock'.
import numpy as np from scipy.spatial.distance import pdist from scipy.cluster.hierarchy import average, dendrogram import matplotlib.pyplot as plt # sample data data = np.array([[1, 5], [2, 4], [3, 6], [4, 8]]) # calculate the distance matrix using a custom metric y = pdist(data, metric='cityblock') # average linkage clustering result = average(y) # Plot the dendrogram plt.figure(figsize=(6, 4)) dendrogram(result) plt.title('Dendrogram - Average Linkage with Cityblock Distance') plt.xlabel('indexes') plt.ylabel('Distance') plt.show()
Output
The above code produces the following result −
