

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the identity array in Numpy
To return the identity array, use the numpy.identity() method in Python Numpy. The identity array is a square array with ones on the main diagonal. The 1s parameter is the number of rows (and columns) in n x n output. The function returns n x n array with its main diagonal set to one, and all other elements 0.
The like parameter is a reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
Steps
At first, import the required library −
import numpy as np
Create a 2d array. To return the identity array, use the numpy.identity() method in Python Numpy. The identity array is a square array with ones on the main diagonal. The 1s parameter is the number of rows (and columns) in n x n output −
arr = np.identity(4)
Display the array −
print("Array...\n", arr)
Get the type of the array −
print("\nArray type...\n", arr.dtype)
Get the shape of the array −
print("\nArray shape...\n", arr.shape)
Get the dimensions of the Array −
print("\nArray Dimensions...\n",arr.ndim)
Get the number of elements in the Array −
print("\nArray (count of elements)...\n",arr.size)
Example
import numpy as np # Create a 2d array # To return the identity array, use the numpy.identity() method in Python Numpy # The identity array is a square array with ones on the main diagonal. # The 1s parameter is the number of rows (and columns) in n x n output arr = np.identity(4) # Display the array print("Array...\n", arr) # Get the type of the array print("\nArray type...\n", arr.dtype) # Get the shape of the array print("\nArray shape...\n", arr.shape) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Get the number of elements of the Array print("\nArray (count of elements)...\n",arr.size)
Output
Array... [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] Array type... float64 Array shape... (4, 4) Array Dimensions... 2 Array (count of elements)... 16
- Related Questions & Answers
- Return the identity array and change the datatype of the output in Numpy
- Return the transpose of the masked array in NumPy
- Return the floor of the array elements in Numpy
- Return the length of the masked array in Numpy
- Return a copy of the masked array in NumPy
- Return the Lower triangle of an array in Numpy
- Return the Upper triangle of an array in Numpy
- Return the mask of a masked array in Numpy
- Return the average of the masked array elements in Numpy
- Return the ceil value of the array elements in Numpy
- Return the truncated value of the array elements in Numpy
- Return the variance of the masked array elements in Numpy
- How to create an identity matrix using Numpy?
- Return each element of the masked array rounded in Numpy
- Return the absolute value of a masked Array in NumPy