Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return real parts if input is complex with all imaginary parts close to zero in Python
To return real parts if input is complex with all imaginary parts close to zero, use the numpy.real_if_close in Python. “Close to zero” is defined as tol * (machine epsilon of the type for a). If a is real, the type of a is used for the output. If a has complex elements, the returned type is float. The 1st parameter is a, the input array. The 2nd parameter is tol, Tolerance in machine epsilons for the complex part of the elements in the array.
Steps
At first, import the required libraries −
import numpy as np
Creating a numpy array using the array() method −
arr = np.array([2.1 + 4e-14j, 5.2 + 3e-15j])
Display the array −
print("Our Array...\n",arr)
Check the Dimensions −
print("\nDimensions of our Array...\n",arr.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",arr.dtype)
Get the Shape −
print("\nShape of our Array object...\n",arr.shape)
To return real parts if input is complex with all imaginary parts close to zero, use the numpy.real_if_close in Python. “Close to zero” is defined as tol * (machine epsilon of the type for a).
print("\nResult...\n",np.real_if_close(arr, tol = 1000))
Example
import numpy as np
# Creating a numpy array using the array() method
arr = np.array([2.1 + 4e-14j, 5.2 + 3e-15j])
# Display the array
print("Our Array...\n",arr)
# Check the Dimensions
print("\nDimensions of our Array...\n",arr.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",arr.dtype)
# Get the Shape
print("\nShape of our Array object...\n",arr.shape)
# To return real parts if input is complex with all imaginary parts close to zero, use the numpy.real_if_close in Python
print("\nResult...\n",np.real_if_close(arr, tol = 1000))
Output
Our Array... [2.1+4.e-14j 5.2+3.e-15j] Dimensions of our Array... 1 Datatype of our Array object... complex128 Shape of our Array object... (2,) Result... [2.1 5.2]