Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python – scipy.linalg.expm
The expm() function of scipy.linalg package is used to compute the matrix exponential using Padé approximation. A Padé approximant is the "best" approximation of a function by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating.
Syntax
scipy.linalg.expm(x)
where x is the input matrix to be exponentiated.
Example 1
Let us consider the following example −
# Import the required libraries
from scipy import linalg
import numpy as np
# Define the input array
e = np.array([[100 , 5] , [78 , 36]])
print("Input Array :\n", e)
# Calculate the exponential
m = linalg.expm(e)
# Display the exponential of matrix
print("Exponential of e: \n", m)
Output
The above program will generate the following output −
Input Array : [[100 5] [ 78 36]] Exponential of e: [[6.74928440e+45 4.84840154e+44] [7.56350640e+45 5.43330432e+44]]
Example 2
Let us take another example −
# Import the required libraries
from scipy import linalg
import numpy as np
# Define the input array
k = np.zeros((3, 3))
print("Input Array :\n", k)
# Calculate the exponential
n = linalg.expm(k)
# Display the exponential of matrix
print("Exponential of k: \n", n)
Output
It will generate the following output −
Input Array : [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] Exponential of k: [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]]
Advertisements