
- Python Basic Tutorial
- Python - Home
- Python - Overview
- Python - Environment Setup
- Python - Basic Syntax
- Python - Comments
- Python - Variables
- Python - Data Types
- Python - Operators
- Python - Decision Making
- Python - Loops
- Python - Numbers
- Python - Strings
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - Date & Time
- Python - Functions
- Python - Modules
- Python - Files I/O
- Python - Exceptions
Python - How to Group Pandas DataFrame by Month?
We will group Pandas DataFrame using the groupby. Select the column to be used using the grouper function. We will group month-wise and calculate sum of Registration Price monthly for our example shown below for Car Sale Records.
At first, let’s say the following is our Pandas DataFrame with three columns −
dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )
Use the Grouper to select Date_of_Purchase column within groupby() function. The frequency freq is set ‘M’ to group by month-wise −
print("\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum())
Example
Following is the code −
import pandas as pd # dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } ) print"DataFrame...\n",dataFrame # Grouper to select Date_of_Purchase column within groupby function print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()
Output
This will produce the following output. The Registration price of every month gets calculated −
DataFrame... Car Date_of_Purchase Reg_Price 0 Audi 2021-06-10 1000 1 Lexus 2021-07-11 1400 2 Tesla 2021-06-25 1100 3 Mercedes 2021-06-29 900 4 BMW 2021-03-20 1700 5 Toyota 2021-01-22 1800 6 Nissan 2021-01-06 1300 7 Bentley 2021-01-04 1150 8 Mustang 2021-05-09 1350 Group Dataframe by month... Reg_Price Date_of_Purchase 2021-01-31 4250.0 2021-02-28 NaN 2021-03-31 1700.0 2021-04-30 NaN 2021-05-31 1350.0 2021-06-30 3000.0 2021-07-31 1400.0
- Related Articles
- Python - How to Group Pandas DataFrame by Days?
- Python - How to Group Pandas DataFrame by Minutes?
- Python - How to Group Pandas DataFrame by Year?
- Python – Sort grouped Pandas dataframe by group size?
- Python – Descending Order Sort grouped Pandas dataframe by group size?
- Python – Ascending Order Sort grouped Pandas dataframe by group size?
- Python - How to group DataFrame rows into list in Pandas?
- How to select the largest of each group in Python Pandas DataFrame?
- Python - Filter Pandas DataFrame by Time
- Python - Compute last of group values in a Pandas DataFrame
- Python - Compute first of group values in a Pandas DataFrame
- Python Pandas – How to use Pandas DataFrame Property: shape
- Python Pandas – How to use Pandas DataFrame tail( ) function
- Python Pandas - Subset DataFrame by Column Name
- How to access a group of rows in a Pandas DataFrame?

Advertisements