Part of Speech Tagging with Stop words using NLTK in python?

PythonServer Side ProgrammingProgramming

The main idea behind Natural Language Processing is machine can do some form of analysis or processing without human intervention at least to some level like understanding some part of what the text means or trying to say.

While trying to process the text, computers needs to filter out useless or less-important data(words) from the text. In NLTK, useless words(data) are referred to as stop words.

Installing Required library

First you need the nltk library, just run the below command in your terminal:

$pip install nltk

So we are going to remove these stop words, so they don’t take space in our database or taking up valuable processing time.

You can create your own list of words that you may consider are the stop words. By default, NLTK contains some bunch of words that they consider to be stop words, you can access it via the NLTK corpus with:

>>> import nltk
>>> from nltk.corpus import stopwords

Here is the list of NLTK stop words:

>>> set(stopwords.words('english'))
{'not', 'other', 'shan', "hadn't", 'she', 'did', 'through', 'and', 'does', "that'll", "weren't", 'your', "should've", "hasn't", 'myself', 'should', 'because', 'wasn', 'what', 'to', 'this', 'was', 'more', 'y', 'again', "needn't", 'into', 'above', 'themselves', 'd', "won't", 'during', 'haven', 'both', "shan't", 'their', 'on', 'hadn', 'up', 'once', 'its', 'against', 'before', 't', 'while', 'needn', 'doing', "don't", 'yourselves', 'until', 'is', 'all', 's', 'will', "you've", 'being', 'under', 'they', 'ours', 'wouldn', 'of', 'didn', 'below', 'just', 'ma', 'yours', "you'll", 'mightn', 'where', 'are', 'that', 'those', 'most', 'them', 'if', 'you', "shouldn't", 'off', 'for', 'her', 'such', 'now', 'than', 're', 'no', 'm', 'or', "aren't", 'further', 'here', "wasn't", 'after', "haven't", 'my', 'himself', 'at', 'had', 'yourself', 'by', 'weren', 'only', 'have', 'we', 'do', 'same', "isn't", 'herself', 'll', 'down', 'then', 'why', 'own', 'him', 'so', 'having', 'nor', 'isn', 'few', 'how', 'each', 'there', 'with', 'couldn', 'about', 'very', 'am', 'me', "didn't", "doesn't", 'which', "she's", 'doesn', 'were', 'he', 'in', "mightn't", 'when', 'our', 'who', 'his', "couldn't", 'the', "you'd", 'be', 'hers', 'hasn', 'between', 'it', 'mustn', 'but', 'out', 'can', "wouldn't", 'ourselves', 'whom', 'been', 'these', 'aren', 'over', 'itself', 'a', 'i', 'too', 'theirs', 'some', "you're", 'as', 'won', "it's", 'from', 'o', 'don', 'any', 've', 'ain', 'has', 'an', "mustn't", 'shouldn'}

Below is a complete program which will demostrate how to use stopwords to remove the stop words from your text:

Example Code

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

example_sent = "Python is a powerful high-level, object-oriented programming language created by Guido van Rossum."\
"It has simple easy-to-use syntax, making it the perfect language for someone trying to learn computer programming for the first time."\
"This is a comprehensive guide on how to get started in Python, why you should learn it and how you can learn it. However, if you knowledge "\
"of other programming languages and want to quickly get started with Python."

stop_words = set(stopwords.words('english'))

word_tokens = word_tokenize(example_sent)

filtered_sentence = [w for w in word_tokens if not w in stop_words]

filtered_sentence = []

for w in word_tokens:
if w not in stop_words:
filtered_sentence.append(w)

print(word_tokens)
print(filtered_sentence)

Output

Text Output: Without filter (with stopwords)

['Python', 'is', 'a', 'powerful', 'high-level', ',', 'object-oriented', 'programming', 'language', 'created', 'by', 'Guido', 'van', 'Rossum.It', 'has', 'simple', 'easy-to-use', 'syntax', ',', 'making', 'it', 'the', 'perfect', 'language', 'for', 'someone', 'trying', 'to', 'learn', 'computer', 'programming', 'for', 'the', 'first', 'time.This', 'is', 'a', 'comprehensive', 'guide', 'on', 'how', 'to', 'get', 'started', 'in', 'Python', ',', 'why', 'you', 'should', 'learn', 'it', 'and', 'how', 'you', 'can', 'learn', 'it', '.', 'However', ',', 'if', 'you', 'knowledge', 'of', 'other', 'programming', 'languages', 'and', 'want', 'to', 'quickly', 'get', 'started', 'with', 'Python', '.']

Text output: With filters(remove stopwords)

['Python', 'powerful', 'high-level', ',', 'object-oriented', 'programming', 'language', 'created', 'Guido', 'van', 'Rossum.It', 'simple', 'easy-to-use', 'syntax', ',', 'making', 'perfect', 'language', 'someone', 'trying', 'learn', 'computer', 'programming', 'first', 'time.This', 'comprehensive', 'guide', 'get', 'started', 'Python', ',', 'learn', 'learn', '.', 'However', ',', 'knowledge', 'programming', 'languages', 'want', 'quickly', 'get', 'started', 'Python', '.']
raja
Published on 01-Apr-2019 15:29:40
Advertisements