- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write the formulas of trigonometric identities.
Trigonometric identities :
Trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. The trigonometric identities hold true only for the right-angle triangle.
Reciprocal Identities:
- $Sin θ = \frac{1}{Cosec θ}$ or $Cosec θ = \frac{1}{Sin θ}$
- $Cos θ = \frac{1}{Sec θ}$ or $Sec θ = \frac{1}{Cos θ}$
- $Tan θ = \frac{1}{Cot θ}$ or $Cot θ = \frac{1}{Tan θ}$
Pythagorean Identities:
- $Sin^2 \theta + cos^2 \theta = 1$
- $1 + tan^2 \theta = sec^2 \theta$
- $cosec^2 \theta = 1 + cot^2 \theta $
Ratio Identities:
- $Tan θ = \frac{Sin θ}{Cos θ}$
- $Cot θ = \frac{Cos θ}{Sin θ}$
Opposite Angle Identities:
- $Sin (-θ) = – Sin θ$
- $Cos (-θ) = Cos θ$
- $Tan (-θ) = – Tan θ$
- $Cot (-θ) = – Cot θ$
- $Sec (-θ) = Sec θ$
- $Cosec (-θ) = -Cosec θ$
Complementary Angles Identities:
- $Sin (90 – θ) = Cos θ$
- $Cos (90 – θ) = Sin θ$
- $Tan (90 – θ) = Cot θ$
- $Cot ( 90 – θ) = Tan θ$
- $Sec (90 – θ) = Cosec θ$
- $Cosec (90 – θ) = Sec θ$
Angle Sum and Difference Identities:
Consider two angles, A and B, the trigonometric sum and difference identities are as follows:
- $sin(A+B)=sin(A).cos(B)+cos(A).sin(B)$
- $sin(A–B)=sinA.cosB–cosA.sinB$
- $cos(A+B)=cosA.cosB–sinA.sinB$
- $cos(A–B)=cosA.cosB+sinA.sinB$
- $tan (A + B) = \frac{tan A + tan B}{1 - tan A.tan B}$
- $tan (A - B) = \frac{tan A - tan B}{1 + tan A.tan B}$
- Related Articles
- Given some formulas of Algebraic identities.
- Write the Trigonometry formulas.
- Prove the following trigonometric identities:\( \operatorname{cosec} \theta \sqrt{1-\cos ^{2} \theta}=1 \)
- Prove the following trigonometric identities:\( \left(1+\cot ^{2} A\right) \sin ^{2} A=1 \)
- Prove the following trigonometric identities:\( \tan ^{2} \theta \cos ^{2} \theta=1-\cos ^{2} \theta \)
- Prove the following trigonometric identities:\( \cos ^{2} A+\frac{1}{1+\cot ^{2} A}=1 \)
- Prove the following trigonometric identities:\( \sin ^{2} A+\frac{1}{1+\tan ^{2} A}=1 \)
- Prove the following trigonometric identities:\( \sec A(1-\sin A)(\sec A+\tan A)=1 \)
- Prove the following trigonometric identities:\( \left(1-\cos ^{2} A\right) \operatorname{cosec}^{2} A=1 \)
- Prove the following trigonometric identities:\( \tan \theta+\frac{1}{\tan \theta}=\sec \theta \operatorname{cosec} \theta \)
- Prove the following trigonometric identities:\( \frac{\sin \theta}{1-\cos \theta}=\operatorname{cosec} \theta+\cot \theta \)
- Define the formulas of the Rectangle.
- Prove the following trigonometric identities:\( \frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta}{\cos \theta} \)
- Prove the following trigonometric identities:\( \frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta} \)
- Prove the following trigonometric identities:\( \frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta} \)

Advertisements