- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Using remainder theorem find the remainder when $4x ^3-12x^2+11x-3$ is divided by $x+\frac{1}{2}$ without using long division. Don't use long division.
Given: $4x ^3-12x^2+11x-3$ is divided by $x+\frac{1}{2}$.
To do: To find the remainder by using remainder theorem when $4x ^3-12x^2+11x-3$ is divided by $x+\frac{1}{2}$.
Solution:
Let $f( x)=4x ^3-12x^2+11x-3$ and $g( x)=x+\frac{1}{2}$.
Let $g( x)=0$
$\Rightarrow x+\frac{1}{2}=0$
$\Rightarrow x=-\frac{1}{2}$, on substituting this value in $f( x)$.
$\Rightarrow f( -\frac{1}{2})=4( -\frac{1}{2})^3-12( -\frac{1}{2})^2+11( -\frac{1}{2})-3$
$\Rightarrow f( -\frac{1}{2})=4( -\frac{1}{2}\times-\frac{1}{2}\times-\frac{1}{2})-12( -\frac{1}{2}\times-\frac{1}{2})+11( -\frac{1}{2})-3$
$\Rightarrow f( -\frac{1}{2})=4( -\frac{1}{8})-12( \frac{1}{4})-\frac{11}{2}-3$
$\Rightarrow f( -\frac{1}{2})=-\frac{1}{2}-3-\frac{11}{2}-3$
$\Rightarrow f( -\frac{1}{2})=-\frac{12}{2}-3$
$\Rightarrow f( -\frac{1}{2})=-6-3$
$\Rightarrow f( -\frac{1}{2})=-9$
Thus, the remainder is $-9$.