Two sides $ \mathrm{AB} $ and $ \mathrm{BC} $ and median $ \mathrm{AM} $ of one triangle $ \mathrm{ABC} $ are respectively equal to sides $ \mathrm{PQ} $ and $ \mathrm{QR} $ and median $ \mathrm{PN} $ of $ \triangle \mathrm{PQR} $ (see Fig. 7.40). Show that:(i) $ \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} $(ii) $ \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} $ "
Given:
Two sides $AB$ and $BC$ and median $AM$ of one triangle $ABC$ are respectively equal to sides $PQ$ and $QR$ and median $PN$ of $\triangle PQR$.
To do:
We have to show that:
(i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$.
Solution:
(i) Given, $AM$ is the median of $\triangle ABC$ and $PN$ is the median of $\triangle PQR$
This implies,
$\frac{1}{2}BC=BM$ and $\frac{1}{2}QR=QN$
and also, $BC=QN$
This implies,
$\frac{1}{2}BC=\frac{1}{2}QR$
Therefore,
$BM=QN$
We know that,
According to the Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
In $\triangle ABM$ and $PQN$,
We have, $AM=PN$ and $AB=PQ$
We also proved $BM=QN$
Therefore,
$\triangle ABM \cong \triangle PQN$.
(ii) We know that,
According to the Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
In $\triangle ABC$ and $PQR$,
We have, $AB=PQ$ and $BC=QR$
By CPCT we know that,
The corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding angles and sides must be equal.
Therefore,
$\triangle ABC=\triangle PQR$.
Hence, $\triangle ABC \cong \triangle PQR$.
Related Articles Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is the perpendicular bisector of \( \mathrm{BC} \) (see Fig. 7.30). Show that \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \)."\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{EFD} \). If \( \mathrm{AB}: \mathrm{BC}: \mathrm{CA}=4: 3: 5 \) and the perimeter of \( \triangle \mathrm{DEF} \) is \( 36 \mathrm{~cm} \), find all the sides of \( \triangle \mathrm{DEF} \).
In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
\( \triangle \mathrm{PQR} \sim \triangle \mathrm{ZYX} . \quad \) If \( \mathrm{PQ}: \mathrm{ZY}=5: 3 \) and \( \mathrm{PR}=10 \mathrm{~cm} \), find \( \mathrm{ZX} \).
In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
In parallelogram \( \mathrm{ABCD} \), two points \( \mathrm{P} \) and \( \mathrm{Q} \) are taken on diagonal \( \mathrm{BD} \) such that \( \mathrm{DP}=\mathrm{BQ} \) (see below figure). Show that:(i) \( \triangle \mathrm{APD} \equiv \triangle \mathrm{CQB} \)(ii) \( \mathrm{AP}=\mathrm{CQ} \)(iii) \( \triangle \mathrm{AQB} \equiv \triangle \mathrm{CPD} \)(iv) \( \mathrm{AQ}=\mathrm{CP} \)(v) \( \mathrm{APCQ} \) is a parallelogram"\n
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
Kickstart Your Career
Get certified by completing the course
Get Started