- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The lengths of the sides of a triangle are in the ratio $3:4:5$ and its perimeter is $144\ cm$. Find the area of the triangle and the height corresponding to the longest side.
Given:
The lengths of the sides of a triangle are in the ratio $3:4:5$ and its perimeter is $144\ cm$.
To do:
We have to find the area of the triangle and the height corresponding to the longest side.
Solution:
Let the sides of the triangle be $a=3x, b=4x$ and $c=5x$.
Perimeter $=144 \mathrm{~cm}$
This implies,
$3x+4x+5x=144\ cm$
$12x=144\ cm$
$x=\frac{144}{12}=12\ cm$
Therefore,
$a=3x=3(12)=36\ cm$
$b=4x=4(12)=48\ cm$
$c=5x=5(12)=60\ cm$
$s=\frac{\text { Perimeter }}{2}$
$=\frac{144}{2}$
$=72$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{72(72-36)(72-48)(72-60)}$
$=\sqrt{72 \times 36 \times 24 \times 12}$
$=\sqrt{12 \times 3 \times 2 \times 12 \times 3 \times 12 \times 2 \times 12}$
$=12 \times 12 \times 3 \times 2$
$=864 \mathrm{~cm}^{2}$
Length of the altitude on the longest side $60 \mathrm{~cm}=\frac{\text { Area } \times 2}{\text { Base }}$
$=\frac{864 \times 2}{60}$
$=\frac{1728}{60}$
$=\frac{288}{10}$
$=28.8 \mathrm{~cm}$
The area of the triangle is $864\ cm^2$ and the height corresponding to the longest side is $28.8\ cm$.