- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.$ \sin \theta=\frac{11}{15} $
Given:
\( \sin \theta=\frac{11}{15} \)
To do:
We have to find the values of the other trigonometric ratios.
Solution:
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ A=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ A=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$tan\ A=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
$cosec\ A=\frac{Hypotenuse}{Opposite}=\frac{AC}{BC}$
$sec\ A=\frac{Hypotenuse}{Adjacent}=\frac{AC}{AB}$
$cot\ A=\frac{Adjacent}{Opposite}=\frac{AB}{BC}$
Here,
Let $sin\ \theta=\frac{BC}{AC}=\frac{11}{15}$
$AC^2=AB^2+BC^2$
$\Rightarrow (15)^2=(AB)^2+(11)^2$
$\Rightarrow AB^2=225-121$
$\Rightarrow AB=\sqrt{104}=\sqrt{4\times26}=2\sqrt{26}$
Therefore,
$cos\ \theta=\frac{AB}{AC}=\frac{2\sqrt{26}}{15}$
$tan\ \theta=\frac{BC}{AB}=\frac{11}{2\sqrt{26}}$
$cosec\ \theta=\frac{AC}{BC}=\frac{15}{11}$
$sec\ \theta=\frac{AC}{AB}=\frac{15}{2\sqrt{26}}$
$cot\ \theta=\frac{AB}{BC}=\frac{2\sqrt{26}}{11}$
- Related Articles
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \tan \theta=11 \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \tan \theta=\frac{8}{15} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( cos \theta=\frac{12}{15} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \sin \theta=\frac{\sqrt{3}}{2} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \cos \theta=\frac{7}{25} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \cot \theta=\frac{12}{5} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \sec \theta=\frac{13}{5} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.$cosec\ \theta =\sqrt{10}$
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \sin \mathrm{A}=\frac{2}{3} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \tan \alpha=\frac{5}{12} \)
- In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.\( \cos \mathrm{A}=\frac{4}{5} \)
- If \( \sin \theta=\frac{1}{\sqrt{2}} \), find all other trigonometric ratios of angle \( \theta \)
- Given $sec\ \theta = \frac{13}{12}$, calculate all other trigonometric ratios.
- If \( \cos \theta=\frac{4}{5} \), find all other trigonometric ratios of angle \( \theta \)
- Write all the other trigonometric ratios of $\angle A$ in terms of $sec\ A$.
