- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the values of k for which the roots are real and equal in each of the following equations:
$(4-k)x^2 + (2k+4)x + (8k + 1) = 0$
Given:
Given quadratic equation is $(4-k)x^2 + (2k+4)x + (8k + 1) = 0$.
To do:
We have to find the values of k for which the roots are real and equal.
Solution:
Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=4-k, b=2k+4$ and $c=8k+1$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is $D=b^2-4ac$.
$D=(2k+4)^2-4(4-k)(8k+1)$
$D=(2k+4)^2-(16-4k)(8k+1)$
$D=(4k^2+16k+16)-128k-16+32k^2+4k$
$D=4k^2+16k+16+32k^2-124k-16$
$D=36k^2-108k$
The given quadratic equation has real and equal roots if $D=0$.
Therefore,
$36k^2-108k=0$
$36(k^2-3)=0$
$k^2-3=0$
$k(k-3)=0$
$k=0$ or $k-3=0$
$k=0$ or $k=3$
The values of $k$ are $0$ and $3$.
Advertisements