# Find the ratio in which the line segment joining the points $A (3, -3)$ and $B (-2, 7)$ is divided by x-axis. Also, find the coordinates of the point of division.

Given:

The line segment joining the points $A(3, -3)$ and $B(-2, 7)$ is divided by the x-axis.

To do:

We have to find the ratio of division and coordinates of the point of division.

Solution:

The point which divides the given line segment lies on x-axis.

This implies,

Its ordinate is $0$.

Let the point $P(x, 0)$ intersects the line segment joining the points $A(3, -3)$ and $B(-2, 7)$ in the ratio $m : n$.

Using section formula, we have,

$(x, y)=(\frac{mx_{2}+nx_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n})$

Therefore,

$P(x, 0)=\left(\frac{m \times (-2)+n \times 3}{m+n}, \frac{m \times 7+n \times(-3)}{(m+n)}\right)$

$\Rightarrow \frac{7m-3 n}{m+n}=0$

$\Rightarrow 7m-3 n=0$

$\Rightarrow 7 m=3 n$

$\Rightarrow \frac{m}{n}=\frac{3}{7}$

$\Rightarrow m:n=3:7$

This implies,

$x=\frac{3(-2)+7(3)}{3+7}$

$=\frac{-6+21}{10}$

$=\frac{15}{10}$

$=\frac{3}{2}$

The ratio of the division is $3:7$ and the coordinates of the point of division are $(\frac{3}{2},0)$.

Updated on: 10-Oct-2022

1K+ Views 