- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Mask an array where the data is exactly equal to value in Numpy
To mask an array where the data is exactly equal to value, use the numpy.ma.masked_object() method in Python Numpy. This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]]) print("Array...
", arr)
Get the type of array −
print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Get the shape of the Array −
print("
Our Array Shape...
",arr.shape)
Get the number of elements of the Array −
print("
Number of Elements in the Array...
",arr.size)
To mask an array where the data is exactly equal to value, use the numpy.ma.masked_object() method in Python Numpy −
print("
Result...
",np.ma.masked_object(arr, 82))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]]) print("Array...
", arr) # Get the type pf array print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Number of Elements in the Array...
",arr.size) # To mask an array where the data is exactly equal to value, use the numpy.ma.masked_object() method in Python Numpy print("
Result...
",np.ma.masked_object(arr, 82))
Output
Array... [[71 55 91] [82 33 39] [73 82 51] [90 45 82]] Array type... int64 Array Dimensions... 2 Our Array Shape... (4, 3) Number of Elements in the Array... 12 Result... [[71 55 91] [-- 33 39] [73 -- 51] [90 45 --]]
- Related Articles
- Mask an array where less than or equal to a given value in Numpy
- Mask array elements equal to a given value in Numpy
- Mask an array where a condition is met in Numpy
- Mask array elements not equal to a given value in Numpy
- Mask array elements greater than or equal to a given value in Numpy
- Mask array elements greater than a given value in Numpy
- Mask array elements less than a given value in Numpy
- Return the mask of a masked array when mask is equal to nomask
- Mask array elements where invalid values NaNs or infs occur in Numpy
- Create a boolean mask from an array in Numpy
- Mask an array inside a given interval in Numpy
- Mask an array outside a given interval in Numpy
- Return the truth value of an array equal to another element-wise in Numpy
- Initialize the mask to homogeneous boolean array by passing in a scalar boolean value in Numpy
- Return the truth value of an array not equal to another element-wise in Numpy
