- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Mask array elements greater than or equal to a given value in Numpy
To mask an array where greater than equal to a given value, use the numpy.ma.masked_greater_equal() method in Python Numpy. This function is a shortcut to masked_where, with condition = (x >= value).
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[83, 55, 91], [90, 49, 39], [73, 83, 51], [82, 45, 67]]) print("Array...
", arr)
Get the type pf array −
print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Get the shape of the Array −
print("
Our Array Shape...
",arr.shape)
Get the number of elements of the Array −
print("
Number of Elements in the Array...
",arr.size)
To mask an array where greater than equal to a given value, use the numpy.ma.masked_greater_equal() method. Here, we will the array greater than equal to value 83 −
print("
Result...
",np.ma.masked_greater_equal(arr, 83))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[83, 55, 91], [90, 49, 39], [73, 83, 51], [82, 45, 67]]) print("Array...
", arr) # Get the type pf array print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Number of Elements in the Array...
",arr.size) # To mask an array where greater than equal to a given value, use the numpy.ma.masked_greater_equal() method in Python Numpy # Here, we will the array greater than equal to value 83 print("
Result...
",np.ma.masked_greater_equal(arr, 83))
Output
Array... [[83 55 91] [90 49 39] [73 83 51] [82 45 67]] Array type... int64 Array Dimensions... 2 Our Array Shape... (4, 3) Number of Elements in the Array... 12 Result... [[-- 55 --] [-- 49 39] [73 -- 51] [82 45 67]]
- Related Articles
- Mask array elements greater than a given value in Numpy
- Mask array elements equal to a given value in Numpy
- Mask an array where less than or equal to a given value in Numpy
- Mask array elements not equal to a given value in Numpy
- Mask array elements less than a given value in Numpy
- Check which element in a masked array is greater than or equal to a given value in NumPy
- Check which element in a masked array is less than or equal to a given value in Numpy
- Count elements less than or equal to a given value in a sorted rotated array in C++
- Mask an array where the data is exactly equal to value in Numpy
- Return the truth value of an array greater than equal to another element-wise in Numpy
- How to find numbers in an array that are greater than, less than, or equal to a value in java?
- Mask array elements where invalid values NaNs or infs occur in Numpy
- Compare and return True if a Numpy array is greater than equal to another
- Mask an array inside a given interval in Numpy
- Mask an array outside a given interval in Numpy
