- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to subset a data.table object in R by specifying columns that contains NA?
To subset a data.table object by specifying columns that contains NA, we can follow the below steps −
First of all, create a data.table object with some columns containing NAs.
Then, use is.na along with subset function to subset the data.table object by specifying columns that contains NA.
Example
Create the data.table object
Let’s create a data.table object as shown below −
library(data.table) x1<-sample(c(NA,round(rnorm(2),2)),25,replace=TRUE) x2<-sample(c(NA,round(rnorm(3),2)),25,replace=TRUE) x3<-sample(c(NA,round(rnorm(3),2)),25,replace=TRUE) x4<-sample(c(NA,round(rnorm(2),2)),25,replace=TRUE) DT<-data.table(x1,x2,x3,x4) DT
Output
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
x1 x2 x3 x4 1: -2.34 -0.57 NA NA 2: -2.34 -0.57 -0.85 -0.47 3: NA -0.57 NA -0.47 4: -2.34 -0.57 -0.84 0.69 5: NA -0.57 1.82 0.69 6: 1.14 -2.03 1.82 NA 7: -2.34 NA -0.84 NA 8: 1.14 0.63 -0.85 NA 9: NA NA -0.84 -0.47 10: 1.14 NA NA -0.47 11: -2.34 NA -0.84 NA 12: NA NA -0.85 NA 13: 1.14 0.63 -0.84 NA 14: -2.34 0.63 -0.84 NA 15: -2.34 -2.03 1.82 NA 16: NA -2.03 1.82 NA 17: NA NA NA -0.47 18: 1.14 -2.03 NA NA 19: NA 0.63 1.82 NA 20: -2.34 NA 1.82 -0.47 21: 1.14 0.63 NA NA 22: 1.14 NA -0.85 -0.47 23: -2.34 -2.03 NA -0.47 24: 1.14 0.63 1.82 -0.47 25: -2.34 NA NA 0.69 x1 x2 x3 x4
Subset data.table object by specifying columns having NAs
Using is.na along with subset function to subset the data.table object DT by specifying columns x1 and x2 that contains NA as shown below −
library(data.table) x1<-sample(c(NA,round(rnorm(2),2)),25,replace=TRUE) x2<-sample(c(NA,round(rnorm(3),2)),25,replace=TRUE) x3<-sample(c(NA,round(rnorm(3),2)),25,replace=TRUE) x4<-sample(c(NA,round(rnorm(2),2)),25,replace=TRUE) DT<-data.table(x1,x2,x3,x4) subset(DT,is.na(x1)|is.na(x2))
Output
x1 x2 x3 x4 1: NA -0.57 NA -0.47 2: NA -0.57 1.82 0.69 3: -2.34 NA -0.84 NA 4: NA NA -0.84 -0.47 5: 1.14 NA NA -0.47 6: -2.34 NA -0.84 NA 7: NA NA -0.85 NA 8: NA -2.03 1.82 NA 9: NA NA NA -0.47 10: NA 0.63 1.82 NA 11: -2.34 NA 1.82 -0.47 12: 1.14 NA -0.85 -0.47 13: -2.34 NA NA 0.69
Advertisements