- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to standardize multiple columns not all in data.table object in R?
To standardize multiple columns not all in data.table object in R, we can follow the below steps −
First of all, create a data.table object.
Then, subset the columns with single square brackets and use lapply, list and scale function to standardize those columns.
Example
Create the data.table object
Let’s create a data.table object as shown below −
library(data.table) x<-sample(1:50,25) y<-sample(1:50,25) z<-sample(1:50,25) DT<-data.table(x,y,z) DT
Output
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
x y z 1: 31 19 49 2: 4 38 45 3: 25 46 43 4: 21 45 32 5: 50 48 14 6: 48 8 50 7: 32 33 18 8: 36 20 42 9: 15 18 47 10: 49 43 19 11: 30 21 36 12: 10 35 24 13: 47 14 27 14: 1 47 21 15: 5 32 34 16: 20 26 30 17: 42 15 7 18: 26 2 33 19: 33 41 23 20: 22 42 48 21: 44 9 10 22: 23 7 46 23: 28 40 8 24: 16 31 22 25: 9 44 37 x y z
Standardize multiple columns not all
Subset the x and y columns with single square brackets and use lapply, list and scale function to standardize those columns as shown below −
library(data.table) x<-sample(1:50,25) y<-sample(1:50,25) z<-sample(1:50,25) DT<-data.table(x,y,z) DT[,c("y","z"):=lapply(list(y,z),scale)] DT
Output
x y z 1: 31 -0.6845293 1.3518818 2: 4 0.6212997 1.0579944 3: 25 1.1711225 0.9110508 4: 21 1.1023946 0.1028606 5: 50 1.3085782 -1.2196325 6: 48 -1.4405357 1.4253536 7: 32 0.2776605 -0.9257451 8: 36 -0.6158015 0.8375789 9: 15 -0.7532572 1.2049381 10: 49 0.9649390 -0.8522733 11: 30 -0.5470737 0.3967479 12: 10 0.4151162 -0.4849141 13: 47 -1.0281686 -0.2644986 14: 1 1.2398503 -0.7053296 15: 5 0.2089327 0.2498042 16: 20 -0.2034344 -0.0440831 17: 42 -0.9594407 -1.7339353 18: 26 -1.8529027 0.1763324 19: 33 0.8274833 -0.5583860 20: 22 0.8962111 1.2784099 21: 44 -1.3718078 -1.5135198 22: 23 -1.5092635 1.1314663 23: 28 0.7587554 -1.6604635 24: 16 0.1402048 -0.6318578 25: 9 1.0336668 0.4702197 x y z
- Related Articles
- How to standardize columns in an R data frame?
- How to standardize selected columns in R data frame?
- How to standardize selected columns in data.table object in R?
- How to standardize columns if some columns are categorical in R data frame?
- How to standardize only numerical columns in an R data frame if categorical columns also exist?
- How to standardize data.table object column by group in R?
- How to sort a data frame in R by multiple columns together?
- How to change a data frame with comma separated values in columns to multiple columns in R?
- How to find the mean for multiple columns in an R data frame using mean function not colMeans?
- How to convert multiple columns into single column in an R data frame?
- Find the mean of multiple columns based on multiple grouping columns in R data frame.
- How to standardize matrix elements in R?
- How to create histogram of all columns in an R data frame?
- How to create table of two factor columns in an R data frame?
- How to find the median of all columns in an R data frame?

Advertisements