- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to standardize matrix elements in R?
The standardization is the process of converting a value to another value so that the mean of the set of values from which the original value was taken becomes zero and the standard deviation becomes one. To standardize matrix elements, we can use data.Normalization function of clusterSim package but we need to make sure that we set the type argument to n1 because that corresponds to standardization with mean zero and standard deviation 1.
Loading clusterSim package −
library("clusterSim")
Example
M1<-matrix(rnorm(25,5,1),ncol=5) M1
output
[,1] [,2] [,3] [,4] [,5] [1,] 5.556224 2.934854 6.239076 4.501244 5.697287 [2,] 5.663404 4.404059 4.458465 2.875686 2.939572 [3,] 4.254188 4.168798 5.716965 5.003396 5.501523 [4,] 4.720976 5.032672 5.511445 4.678973 5.289942 [5,] 2.882521 5.694891 4.996887 4.825759 3.951424
Example
data.Normalization(M1,type="n1")
output
[,1] [,2] [,3] [,4] [,5] [1,] -0.84326235 -1.4331856 0.03959949 0.006214853 -0.6799208 [2,] 0.93062056 0.5714407 -0.31945831 0.065871281 -0.7808809 [3,] -1.18376086 -0.6408459 0.33301120 -0.026702496 -0.6877277 [4,] 1.00673967 0.5514687 -1.40208868 -1.435823004 1.3452576 [5,] 0.08966297 0.9511221 1.34893630 1.390439366 0.8032717
Example
attr(,"normalized:shift")
output
1 2 3 4 5 5.473020 4.598571 5.143872 4.673848 4.880121
Example
attr(,"normalized:scale")
output
1 2 3 4 5 1.0620129 0.9269254 0.9739280 1.2254604 0.9488868
Example
M2<-matrix(rpois(100,10),ncol=10) M2
output
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 15 10 14 15 5 3 11 11 11 7 [2,] 10 8 6 13 4 15 8 6 13 14 [3,] 2 10 5 15 4 10 9 7 6 13 [4,] 12 5 14 11 7 13 8 12 8 7 [5,] 11 11 12 15 10 9 9 12 19 8 [6,] 10 12 8 9 6 12 10 15 11 10 [7,] 13 12 11 9 7 8 17 17 18 13 [8,] 11 8 8 6 10 6 9 8 13 12 [9,] 9 8 10 13 12 14 8 7 4 13 [10,] 7 10 4 7 14 8 10 13 11 11
Example
data.Normalization(M2,type="n1")
output
data.Normalization(M2,type="n1") [,1] [,2] [,3] [,4] [,5] [,6] [1,] -1.9409899 -0.8923761 1.86543426 -1.67507682 -1.1484061 -1.4356319 [2,] 0.9704950 1.5101749 -0.64037295 -0.09481567 -1.6477131 -0.8114441 [3,] 0.3234983 0.1372886 1.03016519 -0.09481567 1.8474359 -0.4993502 [4,] 0.3234983 0.8237318 -0.64037295 -1.04297236 0.3495149 2.3094948 [5,] 0.9704950 0.1372886 0.75174216 0.53728879 -0.1497921 -0.1872563 [6,] -0.3234983 1.5101749 0.19489612 -0.09481567 0.8488219 0.4369314 [7,] -0.6469966 -0.5491545 -1.47564202 -0.41086790 -0.6490991 -0.4993502 [8,] -0.9704950 -1.2355977 -0.08352691 -0.09481567 -0.1497921 0.4369314 [9,] 0.0000000 -0.8923761 -0.91879598 1.80149771 0.3495149 0.1248376 [10,] 1.2939933 -0.5491545 -0.08352691 1.16939325 0.3495149 0.1248376 [,7] [,8] [,9] [,10] [1,] -0.9091373 2.07152663 0.76931647 1.4367622 [2,] 0.6060915 0.74362494 -0.62944075 -0.2535463 [3,] 1.2121831 -1.11543742 0.06993786 0.1690309 [4,] -1.5152288 0.21246427 0.06993786 -0.6761234 [5,] -0.6060915 -0.84985708 -0.27975144 -1.5212777 [6,] -0.3030458 0.47804461 -1.67850865 -0.6761234 [7,] -0.9091373 -0.05311607 0.06993786 0.5916080 [8,] 1.5152288 -0.05311607 0.06993786 1.0141851 [9,] 0.3030458 -0.05311607 2.16807368 1.0141851 [10,] 0.6060915 -1.38101775 -0.62944075 -1.0987005
Example
attr(,"normalized:shift")
output
1 2 3 4 5 6 7 8 9 10 12.0 10.6 10.3 9.3 10.3 10.6 10.0 9.2 8.8 8.6
Example
attr(,"normalized:scale")
output
1 2 3 4 5 6 7 8 3.091206 2.913570 3.591657 3.164034 2.002776 3.204164 3.299832 3.765339 9 10 2.859681 2.366432
Example
M3<-matrix(round(runif(36,2,10),0),ncol=6) M3
output
[,1] [,2] [,3] [,4] [,5] [,6] [1,] 4 9 4 8 7 5 [2,] 8 3 9 7 9 3 [3,] 9 3 8 4 9 4 [4,] 6 10 4 7 3 3 [5,] 7 8 10 9 4 6 [6,] 7 9 6 9 3 7
Example
data.Normalization(M3,type="n1")
output
[,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.8017837 1.4647150 1.5430335 -0.6358384 0.1331559 0.8017837 [2,] -1.3363062 -1.3315591 -0.7715167 -1.1808427 0.9320914 -0.2672612 [3,] -0.8017837 -0.5326236 0.1543033 1.5441789 -0.2663118 -0.8017837 [4,] -0.2672612 -0.5326236 -0.3086067 0.4541703 -1.0652473 -1.3363062 [5,] 0.2672612 0.6657796 -1.2344268 -0.6358384 -1.0652473 0.2672612 [6,] 1.3363062 0.2663118 0.6172134 0.4541703 1.3315591 1.3363062
Example
attr(,"normalized:shift")
output
1 2 3 4 5 6 5.500000 5.333333 4.666667 5.166667 6.666667 6.500000
Example
attr(,"normalized:scale")
output
1 2 3 4 5 6 1.870829 2.503331 2.160247 1.834848 2.503331 1.870829
Example
M4<-matrix(rexp(16,0.50),nrow=4) M4
output
[,1] [,2] [,3] [,4] [1,] 1.8392684 0.1260047 1.8536475 0.3727895 [2,] 2.3926115 2.9282159 0.5356917 0.6675259 [3,] 0.6198705 5.3994087 0.7795360 1.6238094 [4,] 3.9293381 0.6119497 0.8212652 0.6498672
Example
data.Normalization(M4,type="n1")
output
[,1] [,2] [,3] [,4] [1,] -0.76247841 0.6334982 0.2251928 1.2625561 [2,] -0.08745082 -1.0914747 -0.8013569 -0.6296948 [3,] 1.43733539 -0.5780098 -0.7465997 -0.9525044 [4,] -0.58740616 1.0359864 1.3227638 0.3196432
Example
attr(,"normalized:shift")
output
1 2 3 4 1.587821 1.762592 2.272075 3.611091
Example
attr(,"normalized:scale")
output
1 2 3 4 0.4923935 1.5823407 2.2370054 1.3130271
- Related Articles
- How to standardize columns in an R data frame?
- How to standardize selected columns in R data frame?
- How to standardize selected columns in data.table object in R?
- How to plot matrix elements using corrplot in R?
- How to standardize data.table object column by group in R?
- How to standardize multiple columns not all in data.table object in R?
- How to create a matrix with vectors as elements in R?
- How to divide columns of a matrix by vector elements in R?
- How to create an upper triangular matrix using vector elements in R?
- How to set the diagonal elements of a matrix to 1 in R?
- How to standardize columns if some columns are categorical in R data frame?
- How to find the mean of a square matrix elements by excluding diagonal elements in R?
- How to find the variance of row elements of a matrix in R?
- How to convert diagonal elements of a matrix in R into missing values?
- How to find the sum of anti-diagonal elements in a matrix in R?

Advertisements