- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to replace the outliers with 5th and 95th percentile values in R?
There are many ways to define an outlying value and it can be manually set by the researchers as well as technicians. Also, we can use 5th percentile for the lower outlier and the 95th percentile for the upper outlier. For this purpose, we can use squish function of scales package as shown in the below examples.
Example1
library(scales) x1<−1:10 x1<−squish(x1,quantile(x1,c(.05,0.95))) x1
Output
[1] 1.45 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 9.55
Example2
x2<−c(−5,rnorm(78),5) x2
Output
[1] −5.00000000 −0.39993096 −0.11249038 1.06589235 1.17195813 0.15677178 [7] −0.08325310 0.57986817 −0.05529031 0.13352083 1.00608625 −0.86860404 [13] 0.53672576 −0.15262216 −0.81247587 −0.31263625 −1.51127713 −1.59689010 [19] −0.11242962 −1.08234352 −0.04935398 −0.65185804 −1.10369370 0.68732306 [25] 1.83448401 1.08689945 −1.20674408 −1.25753553 0.03354570 0.67981025 [31] 0.24871123 −1.49969111 1.19287825 1.04406030 −1.31756416 0.10204579 [37] 1.48272096 0.97661717 0.50006441 −1.36247153 0.99895292 −0.49534106 [43] −0.24105508 0.35006991 −2.16041158 −1.12644863 2.23190981 −0.51413222 [49] 0.03760280 −1.12237961 −1.54094088 −0.37365780 0.02138277 1.97702046 [55] 0.37190626 −0.59456892 −0.06652980 −1.04453387 −0.50884324 0.85025142 [61] −0.66718350 −0.69703588 0.44922344 0.64238500 −1.11403189 0.66251032 [67] 0.79601219 −0.74801795 −0.10957126 −0.90781918 −2.13721781 1.43186180 [73] −0.32571115 −0.97929747 1.10822193 0.94719910 0.58934102 −1.29942407 [79] 3.83469537 5.00000000
Example
x2<−squish(x2,quantile(x2,c(.05,0.95))) x2
Output
[1] −1.54373835 −0.39993096 −0.11249038 1.06589235 1.17195813 0.15677178 [7] −0.08325310 0.57986817 −0.05529031 0.13352083 1.00608625 −0.86860404 [13] 0.53672576 −0.15262216 −0.81247587 −0.31263625 −1.51127713 −1.54373835 [19] −0.11242962 −1.08234352 −0.04935398 −0.65185804 −1.10369370 0.68732306 [25] 1.83448401 1.08689945 −1.20674408 −1.25753553 0.03354570 0.67981025 [31] 0.24871123 −1.49969111 1.19287825 1.04406030 −1.31756416 0.10204579 [37] 1.48272096 0.97661717 0.50006441 −1.36247153 0.99895292 −0.49534106 [43] −0.24105508 0.35006991 −1.54373835 −1.12644863 1.84161083 −0.51413222 [49] 0.03760280 −1.12237961 −1.54094088 −0.37365780 0.02138277 1.84161083 [55] 0.37190626 −0.59456892 −0.06652980 −1.04453387 −0.50884324 0.85025142 [61] −0.66718350 −0.69703588 0.44922344 0.64238500 −1.11403189 0.66251032 [67] 0.79601219 −0.74801795 −0.10957126 −0.90781918 −1.54373835 1.43186180 [73] −0.32571115 −0.97929747 1.10822193 0.94719910 0.58934102 −1.29942407 [79] 1.84161083 1.84161083
Example3
x3<−c(-50,rpois(198,5),50) x3
Output
[1] −50 5 4 8 6 2 1 6 3 5 7 7 8 5 8 8 5 8 [19] 3 2 3 0 5 6 2 6 6 2 7 5 9 4 5 3 9 7 [37] 4 3 6 5 2 4 9 5 7 1 2 4 2 3 5 5 6 1 [55] 5 7 1 9 6 3 5 4 3 9 5 4 6 8 4 4 6 4 [73] 5 2 4 5 5 7 8 6 3 5 8 5 8 5 2 5 2 8 [91] 6 6 5 7 2 2 5 5 4 3 5 3 7 2 4 6 8 6 [109] 3 4 9 2 2 2 4 4 6 6 5 5 3 5 3 6 6 4 [127] 6 4 4 5 9 6 2 1 3 8 5 7 5 6 6 5 7 2 [145] 8 8 6 5 3 4 5 10 6 6 3 6 2 7 7 5 8 7 [163] 7 3 4 8 4 4 6 8 3 6 4 10 4 3 5 4 4 5 [181] 4 5 4 5 4 5 6 8 2 5 12 12 3 6 5 4 4 5 [199] 5 50
Example
x3<−squish(x3,quantile(x3,c(.05,0.95))) x3
Output
[1] 2 5 4 8 6 2 2 6 3 5 7 7 8 5 8 8 5 8 3 2 3 2 5 6 2 6 6 2 7 5 9 4 5 3 9 7 4 [38] 3 6 5 2 4 9 5 7 2 2 4 2 3 5 5 6 2 5 7 2 9 6 3 5 4 3 9 5 4 6 8 4 4 6 4 5 2 [75] 4 5 5 7 8 6 3 5 8 5 8 5 2 5 2 8 6 6 5 7 2 2 5 5 4 3 5 3 7 2 4 6 8 6 3 4 9 [112] 2 2 2 4 4 6 6 5 5 3 5 3 6 6 4 6 4 4 5 9 6 2 2 3 8 5 7 5 6 6 5 7 2 8 8 6 5 [149] 3 4 5 9 6 6 3 6 2 7 7 5 8 7 7 3 4 8 4 4 6 8 3 6 4 9 4 3 5 4 4 5 4 5 4 5 4 [186] 5 6 8 2 5 9 9 3 6 5 4 4 5 5 9
Example4
x4<−c(−50,rexp(48,3.1),50) x4
Output
[1] −50.00000000 0.46067329 0.15298747 0.22637363 0.23424447 [6] 0.15467335 0.37455989 0.07762013 0.33175821 0.09303333 [11] 0.03806199 0.20649621 0.22883480 0.49089164 0.82497712 [16] 0.04780089 0.05156566 0.35638257 0.37319578 0.71100713 [21] 0.08649528 0.31543159 0.02263685 0.00963146 0.44814049 [26] 0.34506738 0.29533295 0.13803055 0.05497129 0.03901786 [31] 0.01818446 0.78122217 0.04863415 0.33353520 0.39530353 [36] 0.05385106 0.19991695 0.16913554 0.01549729 0.15901185 [41] 0.65120205 0.36483214 0.18226180 0.20708671 0.01590697 [46] 1.01257680 0.42223292 0.17291614 0.15793390 50.00000000
Example
x4<−squish(x4,quantile(x4,c(.05,0.95))) x4
Output
[1] 0.01568165 0.46067329 0.15298747 0.22637363 0.23424447 0.15467335 [7] 0.37455989 0.07762013 0.33175821 0.09303333 0.03806199 0.20649621 [13] 0.22883480 0.49089164 0.80528739 0.04780089 0.05156566 0.35638257 [19] 0.37319578 0.71100713 0.08649528 0.31543159 0.02263685 0.01568165 [25] 0.44814049 0.34506738 0.29533295 0.13803055 0.05497129 0.03901786 [31] 0.01818446 0.78122217 0.04863415 0.33353520 0.39530353 0.05385106 [37] 0.19991695 0.16913554 0.01568165 0.15901185 0.65120205 0.36483214 [43] 0.18226180 0.20708671 0.01590697 0.80528739 0.42223292 0.17291614 [49] 0.15793390 0.80528739
Advertisements