- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the mean squared error for linear model in R?
To find the mean squared error for linear model, we can use predicted values of the model and find the error from dependent variable then take its square and the mean of the whole output. For example, if we have a linear model called M for a data frame df then we can find the mean squared error using the command mean((df$y-predict(M))^2).
Example1
Consider the below data frame −
x1<-rnorm(20) y1<-rnorm(20) df1<-data.frame(x1,y1) df1
Output
x1 y1 1 -0.64419775 -0.655535847 2 -2.02925533 -0.074246704 3 1.42639556 0.226413529 4 0.21841252 -0.799586646 5 -0.08272931 0.021258680 6 1.36349138 -0.358914344 7 0.58243090 0.334064031 8 -0.18839329 0.596566815 9 1.97993745 1.808762160 10 -0.31676008 0.812349831 11 -0.06732802 -0.189255661 12 1.76175840 -0.317888508 13 -0.29681017 0.947048363 14 -1.02210007 0.428273333 15 -0.33408154 2.273976129 16 0.49158882 -0.483902966 17 -0.71446066 0.001058688 18 -0.98031110 0.011280707 19 0.78912612 0.620691096 20 0.63751954 -0.668467539
Creating linear model for y1 and x1 then finding predicted values and the mean squared error −
Model1<-lm(y1~x1,data=df1) predict(Model1)
1 2 3 4 5 6 7 8 0.1936091 0.1343150 0.2822509 0.2305373 0.2176455 0.2795580 0.2461209 0.2131220 9 10 11 12 13 14 15 16 0.3059479 0.2076267 0.2183048 0.2966077 0.2084807 0.1774312 0.2068852 0.2422320 17 18 19 20 0.1906012 0.1792202 0.2549695 0.2484792
mean((df1$y1-predict(Model1))^2)
[1] 0.6022432
Example2
iv1<-rpois(20,2) iv2<-rpois(20,3) iv3<-rpois(20,1) Y<-rpois(20,6) df2<-data.frame(iv1,iv2,iv3,Y) df2
Output
iv1 iv2 iv3 Y 1 3 5 1 5 2 6 2 0 12 3 1 1 0 10 4 5 2 1 6 5 5 1 0 6 6 4 4 0 5 7 1 2 0 2 8 1 1 0 6 9 2 5 0 5 10 2 4 0 6 11 4 6 2 8 12 3 4 1 4 13 2 5 2 6 14 4 3 1 4 15 3 3 2 10 16 2 2 1 7 17 2 4 0 14 18 2 1 0 7 19 1 3 1 7 20 2 4 1 4
Creating linear model for Y, iv1, iv2, iv3 then finding predicted values and the mean squared error −
Model2<-lm(Y~iv1+iv2+iv3,data=df2) predict(Model2)
1 2 3 4 5 6 7 8 6.368896 7.886330 6.659550 7.545170 7.802283 6.911692 6.457914 6.659550 9 10 11 12 13 14 15 16 6.138690 6.340326 6.397466 6.570532 6.027735 7.057851 6.716690 6.688120 17 18 19 20 6.340326 6.945233 6.200801 6.284848
mean((df2$Y-predict(Model2))^2)
[1] 7.745138
- Related Articles
- How to calculate root mean square error for linear model in R?
- How to measure the mean squared error(squared L2 norm) in PyTorch?
- How to find the standard error of mean in R?
- How to display R-squared value on scatterplot with regression model line in R?
- How to extract p-value and R-squared from a linear regression in R?
- How to find the standardized coefficients of a linear regression model in R?
- How to find residual variance of a linear regression model in R?
- How to deal with glm.fit error “NA/NaN/Inf” for logistic regression model in R?
- How to find the sum of squared deviations for an R data frame column?
- How to display p-value with coefficients in stargazer output for linear regression model in R?
- How to find the confusion matrix for linear discriminant analysis in R?
- How to extract the residuals and predicted values from linear model in R?
- How to find the 95% confidence interval for the glm model in R?
- How to create a linear model with interaction term only in R?
- How to find the high leverage values for a regression model in R?

Advertisements