- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the covariance between two vectors in R?
The covariance is a mathematical measurement to quantify the variation between of two variables together. That means it tells us how two variables under consideration vary together. If we have two vectors and we want to find the covariance between them then we can use the command mentioned below −
cov(“First_Vector”,”Second_Vector”)
Example 1
Following snippet creates a sample data frame −
x1<-rpois(150,10) x1
The following dataframe is created
[1] 3 11 9 6 6 9 11 10 8 9 9 11 9 7 15 7 9 9 9 9 13 9 9 4 8 [26] 8 9 10 9 6 15 8 5 4 3 8 16 12 9 8 13 7 10 13 11 6 10 11 11 13 [51] 17 11 12 10 8 12 12 12 13 9 10 10 14 5 10 9 15 11 12 4 15 9 5 12 15 [76] 5 10 14 11 16 6 7 10 16 11 9 12 14 15 9 12 14 10 15 8 13 5 13 9 6 [101] 6 11 7 8 13 8 9 8 10 11 12 10 7 15 8 11 13 11 11 15 6 9 11 6 4 [126] 11 12 6 9 13 8 9 9 10 11 12 10 12 12 13 9 13 3 11 10 15 13 17 9 9
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x1<-rpois(150,10) y1<-rpois(150,10) y1
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 5 10 6 7 4 9 6 8 14 23 7 10 8 9 7 7 8 10 4 5 13 10 11 5 12 [26] 6 13 7 8 9 15 10 13 13 9 13 6 12 13 14 4 3 16 13 6 13 11 12 14 10 [51] 9 19 9 11 6 10 14 13 8 12 11 5 11 8 9 8 8 10 14 15 8 7 8 10 3 [76] 10 12 9 15 13 14 7 11 5 4 11 11 17 8 8 7 12 13 6 16 12 11 10 10 7 [101] 15 12 7 15 12 14 11 15 8 10 7 11 10 19 5 16 10 7 6 5 11 8 9 13 8 [126] 15 12 5 9 10 5 8 10 11 14 14 9 15 9 8 9 5 6 10 10 10 9 9 12 6
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x1<-rpois(150,10) y1<-rpois(150,10) cov(x1,y1)
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 0.4774049
Example 2
Following snippet creates a sample data frame −
x2<-rnorm(50) x2
The following dataframe is created
[1] 1.25750902 0.32186949 3.40052558 0.44119671 -1.08329511 -0.26017558 [7] 0.57312232 -0.26519546 0.09472348 1.28948733 -0.19954613 0.05224845 [13] -0.67385227 -0.51864208 1.02551846 0.50382941 -0.62157377 0.69820899 [19] 0.88856349 -0.61695761 -0.48919541 1.34682557 -2.18372173 1.07146847 [25] -0.48230712 -0.41690160 -0.38002286 1.44233750 0.38448766 -0.01916229 [31] 0.44851256 -0.41081087 0.75761904 -0.90755448 1.92020781 0.50809101 [37] 1.34417231 -0.30847061 0.42927524 1.23221216 0.76175556 -0.98098577 [43] -0.36721302 1.58770646 -1.30875036 -2.03476277 -0.25771345 0.47015599 [49] 0.40688749 -0.52790950
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x2<-rnorm(50) y2<-rnorm(50) y2
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 0.98125028 0.34346184 1.72634033 -0.17178732 0.38358028 -1.32951022 [7] 0.31342774 1.14990770 -0.31250392 0.60410350 -0.78426947 0.22188330 [13] -0.49964967 -0.76936102 -1.49598364 1.17451928 1.36855537 0.77550430 [19] -0.61261281 2.30931171 -1.06114800 -0.73770636 -0.55790321 -1.01225363 [25] 2.04464287 -0.42538498 0.84938564 0.19667487 -0.42453258 0.93404438 [31] -0.41025984 1.05187427 -0.49740459 0.07785702 -1.07441547 -1.73279495 [37] -1.81296164 -0.53280769 0.78350484 -0.73800794 0.11623244 0.45957466 [43] -0.28623314 0.78454369 -0.83363845 -1.19011695 -0.77571641 -1.87916329 [49] -0.06926718 1.34875928
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x2<-rnorm(50) y2<-rnorm(50) cov(x2,y2)
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 0.01245908
Example 3
Following snippet creates a sample data frame −
x3<-sample(0:9,200,replace=TRUE) x3
The following dataframe is created
[1] 1 1 5 2 9 7 7 1 6 6 6 7 0 7 1 2 8 2 0 9 3 6 0 4 4 3 3 3 8 3 4 1 0 9 4 1 6 [38] 7 0 9 3 4 4 9 8 0 0 5 2 5 9 7 4 0 8 9 4 0 7 8 1 8 5 7 3 1 8 0 5 4 7 1 3 5 [75] 8 7 4 3 7 7 9 2 5 9 8 6 2 2 7 1 4 7 8 0 0 1 4 9 7 5 2 8 0 0 1 4 6 7 0 9 7 [112] 3 2 3 7 4 8 8 9 2 2 5 5 8 4 6 7 4 4 5 0 0 9 5 3 1 7 0 1 7 4 1 2 7 8 4 9 2 [149] 7 2 1 5 9 4 4 3 1 7 7 4 7 6 5 3 8 1 0 7 3 0 7 0 1 1 5 6 1 1 2 4 1 5 0 1 1 [186] 3 8 1 6 5 0 3 6 3 2 2 3 4 6 7
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x3<-sample(0:9,200,replace=TRUE) y3<-sample(0:9,200,replace=TRUE) y3
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 9 8 7 4 2 4 7 0 8 7 6 8 7 6 1 7 4 4 2 6 5 2 8 0 4 0 1 2 0 7 6 9 9 6 5 5 2 [38] 5 4 9 3 7 8 2 5 5 7 4 1 0 3 6 0 5 1 5 8 1 1 8 3 8 2 9 2 7 0 1 8 6 3 1 4 3 [75] 7 1 8 5 3 6 0 5 2 3 3 3 8 6 8 2 6 1 6 6 4 9 0 5 2 2 8 6 7 3 4 8 9 5 3 9 6 [112] 4 6 7 0 9 3 3 5 9 0 8 5 2 8 3 9 3 3 8 9 4 9 6 3 8 7 2 7 0 8 1 6 8 2 5 8 4 [149] 1 7 8 7 3 0 8 4 2 2 5 4 7 1 4 2 1 8 7 9 4 3 1 5 6 5 1 5 8 6 7 1 9 9 7 5 9 [186] 9 5 4 7 7 4 2 1 1 8 4 6 7 5 8
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x3<-sample(0:9,200,replace=TRUE) y3<-sample(0:9,200,replace=TRUE) cov(x3,y3)
If you execute all the above given snippets as a single program, it generates the following Output −
[1] -0.6922111
Example 4
Following snippet creates a sample data frame −
x4<-sample(1:100,200,replace=TRUE) x4
The following dataframe is created
[1] 68 42 76 20 68 9 47 84 31 91 72 30 32 28 78 88 27 50 [19] 46 54 37 20 10 1 34 16 54 61 99 87 25 8 80 11 53 85 [37] 70 57 71 75 100 39 17 54 66 20 18 59 23 96 85 27 45 65 [55] 63 54 64 98 70 30 43 96 52 48 5 12 8 57 61 72 92 27 [73] 21 30 36 22 83 17 56 6 55 67 92 85 57 95 3 90 20 88 [91] 70 87 14 3 76 70 100 32 58 26 93 43 48 90 42 77 92 88 [109] 3 35 92 96 77 45 19 36 76 61 68 12 73 39 73 11 35 71 [127] 70 9 50 46 53 15 48 47 56 44 15 49 33 66 67 33 77 62 [145] 38 56 49 33 93 72 39 74 61 10 94 49 84 79 80 35 67 65 [163] 17 97 13 91 80 42 50 74 55 70 24 66 91 54 32 19 23 100 [181] 50 60 16 21 37 31 26 32 75 85 35 82 77 59 70 3 14 88 [199] 75 76
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x4<-sample(1:100,200,replace=TRUE) y4<-sample(1:100,200,replace=TRUE) y4
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 49 59 93 12 21 1 36 45 62 85 19 88 5 74 7 63 42 90 [19] 70 66 20 61 22 63 94 67 59 22 86 48 50 83 64 12 59 33 [37] 11 74 8 99 93 23 18 58 83 82 68 57 71 52 77 98 97 38 [55] 54 81 32 94 79 3 52 40 41 42 61 54 11 64 44 90 17 63 [73] 11 61 3 46 2 70 3 62 41 13 53 80 16 75 86 60 11 38 [91] 72 83 17 63 54 52 77 67 65 25 91 2 79 93 17 63 36 3 [109] 47 32 51 17 30 12 95 40 57 18 99 87 56 66 45 89 30 52 [127] 20 92 24 30 58 54 88 61 73 15 22 69 82 3 96 42 85 58 [145] 63 70 91 98 91 46 4 23 67 89 7 92 10 10 77 31 80 34 [163] 45 74 46 65 88 86 15 32 10 32 17 97 45 88 44 69 85 35 [181] 45 85 51 80 46 44 65 63 16 28 62 53 47 60 63 55 34 73 [199] 50 100
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x4<-sample(1:100,200,replace=TRUE) y4<-sample(1:100,200,replace=TRUE) cov(x4,y4)
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 24.04623
Example 5
Following snippet creates a sample data frame −
x5<-runif(50,2,5) x5
The following dataframe is created
[1] 3.262035 3.831783 3.212780 3.566762 2.076127 4.933796 2.550656 3.561904 [9] 2.907720 3.889833 2.777207 3.249720 4.521201 4.310791 4.713148 3.620999 [17] 3.985192 3.290758 3.449575 2.213117 3.644794 2.694455 4.911007 4.932060 [25] 2.757384 3.337899 3.946829 3.663683 2.738155 4.050442 2.351040 3.209593 [33] 2.713664 4.359059 3.947258 3.316234 4.118935 4.564338 3.251211 3.264638 [41] 4.674579 2.970812 3.063797 3.577531 3.954324 3.663500 4.248933 3.761611 [49] 3.891069 3.178017
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x5<-runif(50,2,5) y5<-runif(50,2,5) y5
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 2.777017 3.811627 3.592484 4.513459 4.327442 4.184489 3.913186 2.771264 [9] 4.172619 2.781835 2.728659 4.343730 3.743249 2.264408 4.294990 4.179432 [17] 3.576398 4.898790 4.094172 3.182964 3.207227 3.559252 4.996966 4.390270 [25] 3.637017 2.330806 3.220873 3.372030 2.680986 2.166316 4.752359 2.517513 [33] 3.814364 4.396744 2.047065 3.522479 4.422268 3.351226 4.109004 4.028507 [41] 4.150114 2.140215 4.459092 2.227658 4.041431 3.735306 3.122045 4.577403 [49] 4.851432 3.479120
To find the covariance between two vectors, on the above created data frame, add the following code to the above snippet −
x5<-runif(50,2,5) y5<-runif(50,2,5) cov(x5,y5)
If you execute all the above given snippets as a single program, it generates the following Output −
[1] 0.06237247
- Related Articles
- How to find different elements between two string vectors in R?
- How to find the union of two vectors in R?
- How to find the number of common words between two string vectors in R?
- How to concatenate two or more vectors in R?
- How to find the cross product of two vectors in R by adding the elements?
- How to find common elements between two Vectors using STL in C++?
- How to multiply two vectors in R as in mathematics?
- How to find the union of three vectors in R?
- How to create a covariance matrix in R?
- How to match two string vectors if the strings case is different in both the vectors in R?
- How to create a sequence of values between two vectors in R using corresponding elements?
- How to find the common elements in multiple vectors in R?
- How to find the unique elements in multiple vectors in R?
- How to combine two factor vectors to create one in R?
- How to check if two vectors are exactly same in R?
