Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find numeric columns in Pandas?
To find numeric columns in Pandas, we can make a list of integers and then include it into select_dtypes() method. Let's take an example and see how to apply this method.
Steps
- Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.
- Print the input DataFrame, df.
- Make a list of data type, i.e., numerics, to select a column.
- Return a subset of the DataFrame's columns based on the column dtypes.
- Print the column whose data type is int.
Example
import pandas as pd
df = pd.DataFrame(
dict(
name=['John', 'Jacob', 'Tom', 'Tim', 'Ally'],
marks=[89, 23, 100, 56, 90],
subjects=["Math", "Physics", "Chemistry", "Biology", "English"]
)
)
print "Input DataFrame is:\n", df
numerics = ['int16', 'int32', 'int64']
df = df.select_dtypes(include=numerics)
print "Numeric column in input DataFrame is:\n", df
Output
Input DataFrame is:
name marks subjects
0 John 89 Math
1 Jacob 23 Physics
2 Tom 100 Chemistry
3 Tim 56 Biology
4 Ally 90 English
Numeric column in input DataFrame is:
marks
0 89
1 23
2 100
3 56
4 90Advertisements