- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to create group names for consecutively duplicate values in an R data frame column?
The grouping of values can be done in many ways and one such way is if we have duplicate values or unique values then the group can be set based on that. If all the values are unique then there is no sense for grouping but if we have varying values then the grouping can be done. For this purpose, we can use rleid function as shown in the below examples.
Example1
Consider the below data frame −
> x<-sample(0:2,20,replace=TRUE) > df1<-data.frame(x) > df1
Output
x 1 2 2 1 3 2 4 2 5 1 6 0 7 1 8 1 9 1 10 1 11 0 12 0 13 1 14 2 15 1 16 0 17 1 18 0 19 1 20 2
Creating the groups for values in x −
> df1$Grp<-paste0("Grp",rleid(df1$x)) > df1
Output
x Grp 1 2 Grp1 2 1 Grp2 3 2 Grp3 4 2 Grp3 5 1 Grp4 6 0 Grp5 7 1 Grp6 8 1 Grp6 9 1 Grp6 10 1 Grp6 11 0 Grp7 12 0 Grp7 13 1 Grp8 14 2 Grp9 15 1 Grp10 16 0 Grp11 17 1 Grp12 18 0 Grp13 19 1 Grp14 20 2 Grp15
Example2
> y<-sample(0:1,20,replace=TRUE) > df2<-data.frame(y) > df2
Output
y 1 0 2 1 3 0 4 1 5 1 6 1 7 0 8 0 9 0 10 1 11 0 12 0 13 0 14 0 15 0 16 1 17 1 18 1 19 1 20 0
Creating the groups for values in y −
> df2$Category<-paste0("Category#",rleid(df2$y)) > df2
Output
y Category 1 0 Category#1 2 1 Category#2 3 0 Category#3 4 1 Category#4 5 1 Category#4 6 1 Category#4 7 0 Category#5 8 0 Category#5 9 0 Category#5 10 1 Category#6 11 0 Category#7 12 0 Category#7 13 0 Category#7 14 0 Category#7 15 0 Category#7 16 1 Category#8 17 1 Category#8 18 1 Category#8 19 1 Category#8 20 0 Category#9
Advertisements