- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to access pandas DataFrame elements using the .iloc attribute?
The pandas.DataFrame.iloc attribute is used to access elements from a pandas DataFrame using the integer position. And It is very similar to the pandas.DataFrame “iat” attribute but the difference is, the “iloc” attribute can access a group of elements whereas the “iat” attribute accesses only a single element.
The “.iloc” attribute allows inputs like an integer value, a list of integer values, and a slicing object with integers, and boolean array, etc.
The attribute will raise an “IndexError” if the requested index is out of bounds, except for the slicing indexer object.
Example 1
In this following example, we created a pandas DataFrame using a nested list with integer values. After that, we have applied the iloc attribute with a single integer value.
# importing pandas package import pandas as pd # create a Pandas DataFrame df = pd.DataFrame([[1,2,3,4],[10,20,30,40],[100,200,300,400]], columns=list('abcd')) print("DataFrame:") print(df) # Access the elements using iloc attribute result = df.iloc[0] print("Output:") print(result)
Output
The output is given below −
DataFrame: a b c d 0 1 2 3 4 1 10 20 30 40 2 100 200 300 400 Output: a 1 b 2 c 3 d 4 Name: 0, dtype: int64
The iloc attribute accessed the entire 0th-row from the given DataFrame.
Example 2
Let’s access the elements from pandas.DataFrame by providing the list of integer values to the iloc attribute. In this example, we have specified [0,1] to the “iloc” attribute.
# importing pandas package import pandas as pd # create a Pandas DataFrame df = pd.DataFrame([[1,2,3,4],[10,20,30,40],[100,200,300,400]], columns=list('abcd')) print("DataFrame:") print(df) # Access the elements using a list of integers result = df.iloc[[0,1]] print("Output:") print(result)
Output
The output is given below −
DataFrame: a b c d 0 1 2 3 4 1 10 20 30 40 2 100 200 300 400 Output: a b c d 0 1 2 3 4 1 10 20 30 40
We have successfully accessed the 0th and 1st-row elements from the pandas DataFrame using the “iloc” attribute. As a result, it returns a new DataFrame object which is displayed in the above output block.