- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How do you compute the future value of a lump-sum amount and an annuity?
Calculation of the future value of a lump sum may be necessary for many reasons. The investors or lenders may want to know how much they will get for their lump-sum investment after a specific period of time. Knowing the future value is important for the borrower is important too because he or she has to pay the total amount of lump-sum plus any interest on them.
Future Value of a Lump-sum Amount
We know that,
Future Sum = Principal + Interest Rate on Principal
So, for the first year,
F1 = P + P x i = P (1+i)
F2 = F1 + F1i = F1 (F1 + i) = P (1+i) (1+i) = P(1+i)2
Similarly,
F3 = P (1+i)3
So, for principal P and future sum F, and interest rate (i), and n years, the compounded value is given by,
Fn = P(1+i)n
The term (1+i)n is known as the compound value factor of lump-sum 1. It is always greater than 1 for positive i which means that CVF goes up with increasing i and n.
Note − the compound value of a lump-sum goes up with time.
Future Value of an Annuity
An annuity is a fixed payment for a given number of years. When the borrower promises to pay the invested or borrowed money in a series of payments, it is an annuity. A common example of annuity includes flat rents. Calculation of annuity can be done using a formula but first, let us discuss a specific case to clear the concept of an annuity.
Suppose, a constant value of money is invested for a specific period of time. For example, if you invest INR 1 for four years at a 5% interest rate, it means that INR 1 invested will grow for 3 years after the first year. Similarly, INR 1 will grow for 2 years at the end of the seconds year for two years, then for 1 year at the end of the third year, and at the end of the fourth year, no growth will occur.
The compound value for first year would be,
= 1 × (1.05)3 = 1 × 1.108 = 1.167
This way, the deposited amount for second year would be,
= 1 × (1.05)2 =1 × 1.108 = 1.108
For the third year, it will grow at,
= 1 × 1.05 = 1.050
The aggregate compounded value for all the years would be,
= 1.167 + 1.108 + 1.050 +1.000 = 4.325
This is the compound value of an annuity.
The above example can be stated in terms of formula as,
The present value of an annuity, PV = C {1 - (1+r)-n / r}
Where, C is Cash flow per period, r is a rate of interest, and n is the number of periods.
Note − Annuity occurs when the borrower makes a series of payments that come down with a passing period of time.
- Related Articles
- Compare annuity and lump sum.
- Do you think robots will replace jobs in near future?
- Write the difference between present value and future value.
- How is Annuity Due different from General Annuity?
- How do you find the sum of all the numbers in a java array
- How do you do a deep copy of an object in .NET?
- How do you copy a Lua table by value?
- How do you convert an array of ObjectIds into an array of embedded documents with a field containing the original array element value?
- How do you give a C# Auto-Property a default value?
- Finding least number of notes to sum an amount - JavaScript
- Difference between Annuity and Perpetuity
- How do you find the length of an array in C#?
- How do you print the content of an array in Java?
- How do you perform an AND query on an array in MongoDB?
- How do you append a carriage return to a value in MySQL?
