- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How can Tensorflow and pre-trained model be used for feature extraction?
Tensorflow and the pre-trained model can be used for feature extraction by setting the ‘trainable’ feature of the previously created ‘base_model’ to ‘False’.
Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?
A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model.
We will understand how to classify images of cats and dogs with the help of transfer learning from a pre-trained network. The intuition behind transfer learning for image classification is, if a model is trained on a large and general dataset, this model can be used to effectively serve as a generic model for the visual world. It would have learned the feature maps, which means the user won’t have to start from scratch by training a large model on a large dataset.
Read More: How can a customized model be pre-trained?
We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.
Example
print("Feature extraction") base_model.trainable = False print("The base model architecture") base_model.summary()
Code credit −https://www.tensorflow.org/tutorials/images/transfer_learning
Output
Feature extraction The base model architecture Model: "mobilenetv2_1.00_160" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 160, 160, 3) 0 __________________________________________________________________________________________________ Conv1 (Conv2D) (None, 80, 80, 32) 864 input_1[0][0] __________________________________________________________________________________________________ bn_Conv1 (BatchNormalization) (None, 80, 80, 32) 128 Conv1[0][0] __________________________________________________________________________________________________ Conv1_relu (ReLU) (None, 80, 80, 32) 0 bn_Conv1[0][0] __________________________________________________________________________________________________ expanded_conv_depthwise (Depthw (None, 80, 80, 32) 288 Conv1_relu[0][0] __________________________________________________________________________________________________ expanded_conv_depthwise_BN (Bat (None, 80, 80, 32) 128 expanded_conv_depthwise[0][0] __________________________________________________________________________________________________ expanded_conv_depthwise_relu (R (None, 80, 80, 32) 0 expanded_conv_depthwise_BN[0][0] __________________________________________________________________________________________________ expanded_conv_project (Conv2D) (None, 80, 80, 16) 512 expanded_conv_depthwise_relu[0][0 __________________________________________________________________________________________________ expanded_conv_project_BN (Batch (None, 80, 80, 16) 64 expanded_conv_project[0][0] __________________________________________________________________________________________________ block_1_expand (Conv2D) (None, 80, 80, 96) 1536 expanded_conv_project_BN[0][0] __________________________________________________________________________________________________ block_1_expand_BN (BatchNormali (None, 80, 80, 96) 384 block_1_expand[0][0] __________________________________________________________________________________________________ block_1_expand_relu (ReLU) (None, 80, 80, 96) 0 block_1_expand_BN[0][0] __________________________________________________________________________________________________ block_1_pad (ZeroPadding2D) (None, 81, 81, 96) 0 block_1_expand_relu[0][0] __________________________________________________________________________________________________ block_1_depthwise (DepthwiseCon (None, 40, 40, 96) 864 block_1_pad[0][0] __________________________________________________________________________________________________ block_1_depthwise_BN (BatchNorm (None, 40, 40, 96) 384 block_1_depthwise[0][0] __________________________________________________________________________________________________ block_1_depthwise_relu (ReLU) (None, 40, 40, 96) 0 block_1_depthwise_BN[0][0] __________________________________________________________________________________________________ block_1_project (Conv2D) (None, 40, 40, 24) 2304 block_1_depthwise_relu[0][0] __________________________________________________________________________________________________ block_1_project_BN (BatchNormal (None, 40, 40, 24) 96 block_1_project[0][0] __________________________________________________________________________________________________ block_2_expand (Conv2D) (None, 40, 40, 144) 3456 block_1_project_BN[0][0] __________________________________________________________________________________________________ block_2_expand_BN (BatchNormali (None, 40, 40, 144) 576 block_2_expand[0][0] __________________________________________________________________________________________________ block_2_expand_relu (ReLU) (None, 40, 40, 144) 0 block_2_expand_BN[0][0] __________________________________________________________________________________________________ block_2_depthwise (DepthwiseCon (None, 40, 40, 144) 1296 block_2_expand_relu[0][0] __________________________________________________________________________________________________ block_2_depthwise_BN (BatchNorm (None, 40, 40, 144) 576 block_2_depthwise[0][0] __________________________________________________________________________________________________ block_2_depthwise_relu (ReLU) (None, 40, 40, 144) 0 block_2_depthwise_BN[0][0] __________________________________________________________________________________________________ block_2_project (Conv2D) (None, 40, 40, 24) 3456 block_2_depthwise_relu[0][0] __________________________________________________________________________________________________ block_2_project_BN (BatchNormal (None, 40, 40, 24) 96 block_2_project[0][0] __________________________________________________________________________________________________ block_2_add (Add) (None, 40, 40, 24) 0 block_1_project_BN[0][0] block_2_project_BN[0][0] __________________________________________________________________________________________________ block_3_expand (Conv2D) (None, 40, 40, 144) 3456 block_2_add[0][0] __________________________________________________________________________________________________ block_3_expand_BN (BatchNormali (None, 40, 40, 144) 576 block_3_expand[0][0] __________________________________________________________________________________________________ block_3_expand_relu (ReLU) (None, 40, 40, 144) 0 block_3_expand_BN[0][0] __________________________________________________________________________________________________ block_3_pad (ZeroPadding2D) (None, 41, 41, 144) 0 block_3_expand_relu[0][0] __________________________________________________________________________________________________ block_3_depthwise (DepthwiseCon (None, 20, 20, 144) 1296 block_3_pad[0][0] __________________________________________________________________________________________________ block_3_depthwise_BN (BatchNorm (None, 20, 20, 144) 576 block_3_depthwise[0][0] __________________________________________________________________________________________________ block_3_depthwise_relu (ReLU) (None, 20, 20, 144) 0 block_3_depthwise_BN[0][0] __________________________________________________________________________________________________ block_3_project (Conv2D) (None, 20, 20, 32) 4608 block_3_depthwise_relu[0][0] __________________________________________________________________________________________________ block_3_project_BN (BatchNormal (None, 20, 20, 32) 128 block_3_project[0][0] __________________________________________________________________________________________________ block_4_expand (Conv2D) (None, 20, 20, 192) 6144 block_3_project_BN[0][0] __________________________________________________________________________________________________ block_4_expand_BN (BatchNormali (None, 20, 20, 192) 768 block_4_expand[0][0] __________________________________________________________________________________________________ block_4_expand_relu (ReLU) (None, 20, 20, 192) 0 block_4_expand_BN[0][0] __________________________________________________________________________________________________ block_4_depthwise (DepthwiseCon (None, 20, 20, 192) 1728 block_4_expand_relu[0][0] __________________________________________________________________________________________________ block_4_depthwise_BN (BatchNorm (None, 20, 20, 192) 768 block_4_depthwise[0][0] __________________________________________________________________________________________________ block_4_depthwise_relu (ReLU) (None, 20, 20, 192) 0 block_4_depthwise_BN[0][0] __________________________________________________________________________________________________ block_4_project (Conv2D) (None, 20, 20, 32) 6144 block_4_depthwise_relu[0][0] __________________________________________________________________________________________________ block_4_project_BN (BatchNormal (None, 20, 20, 32) 128 block_4_project[0][0] __________________________________________________________________________________________________ block_4_add (Add) (None, 20, 20, 32) 0 block_3_project_BN[0][0] block_4_project_BN[0][0] __________________________________________________________________________________________________ block_5_expand (Conv2D) (None, 20, 20, 192) 6144 block_4_add[0][0] __________________________________________________________________________________________________ block_5_expand_BN (BatchNormali (None, 20, 20, 192) 768 block_5_expand[0][0] __________________________________________________________________________________________________ block_5_expand_relu (ReLU) (None, 20, 20, 192) 0 block_5_expand_BN[0][0] __________________________________________________________________________________________________ block_5_depthwise (DepthwiseCon (None, 20, 20, 192) 1728 block_5_expand_relu[0][0] __________________________________________________________________________________________________ block_5_depthwise_BN (BatchNorm (None, 20, 20, 192) 768 block_5_depthwise[0][0] __________________________________________________________________________________________________ block_5_depthwise_relu (ReLU) (None, 20, 20, 192) 0 block_5_depthwise_BN[0][0] __________________________________________________________________________________________________ block_5_project (Conv2D) (None, 20, 20, 32) 6144 block_5_depthwise_relu[0][0] __________________________________________________________________________________________________ block_5_project_BN (BatchNormal (None, 20, 20, 32) 128 block_5_project[0][0] __________________________________________________________________________________________________ block_5_add (Add) (None, 20, 20, 32) 0 block_4_add[0][0] block_5_project_BN[0][0] __________________________________________________________________________________________________ block_6_expand (Conv2D) (None, 20, 20, 192) 6144 block_5_add[0][0] __________________________________________________________________________________________________ block_6_expand_BN (BatchNormali (None, 20, 20, 192) 768 block_6_expand[0][0] __________________________________________________________________________________________________ block_6_expand_relu (ReLU) (None, 20, 20, 192) 0 block_6_expand_BN[0][0] __________________________________________________________________________________________________ block_6_pad (ZeroPadding2D) (None, 21, 21, 192) 0 block_6_expand_relu[0][0] __________________________________________________________________________________________________ block_6_depthwise (DepthwiseCon (None, 10, 10, 192) 1728 block_6_pad[0][0] __________________________________________________________________________________________________ block_6_depthwise_BN (BatchNorm (None, 10, 10, 192) 768 block_6_depthwise[0][0] __________________________________________________________________________________________________ block_6_depthwise_relu (ReLU) (None, 10, 10, 192) 0 block_6_depthwise_BN[0][0] __________________________________________________________________________________________________ block_6_project (Conv2D) (None, 10, 10, 64) 12288 block_6_depthwise_relu[0][0] __________________________________________________________________________________________________ block_6_project_BN (BatchNormal (None, 10, 10, 64) 256 block_6_project[0][0] __________________________________________________________________________________________________ block_7_expand (Conv2D) (None, 10, 10, 384) 24576 block_6_project_BN[0][0] __________________________________________________________________________________________________ block_7_expand_BN (BatchNormali (None, 10, 10, 384) 1536 block_7_expand[0][0] __________________________________________________________________________________________________ block_7_expand_relu (ReLU) (None, 10, 10, 384) 0 block_7_expand_BN[0][0] __________________________________________________________________________________________________ block_7_depthwise (DepthwiseCon (None, 10, 10, 384) 3456 block_7_expand_relu[0][0] __________________________________________________________________________________________________ block_7_depthwise_BN (BatchNorm (None, 10, 10, 384) 1536 block_7_depthwise[0][0] __________________________________________________________________________________________________ block_7_depthwise_relu (ReLU) (None, 10, 10, 384) 0 block_7_depthwise_BN[0][0] __________________________________________________________________________________________________ block_7_project (Conv2D) (None, 10, 10, 64) 24576 block_7_depthwise_relu[0][0] __________________________________________________________________________________________________ block_7_project_BN (BatchNormal (None, 10, 10, 64) 256 block_7_project[0][0] __________________________________________________________________________________________________ block_7_add (Add) (None, 10, 10, 64) 0 block_6_project_BN[0][0] block_7_project_BN[0][0] __________________________________________________________________________________________________ block_8_expand (Conv2D) (None, 10, 10, 384) 24576 block_7_add[0][0] __________________________________________________________________________________________________ block_8_expand_BN (BatchNormali (None, 10, 10, 384) 1536 block_8_expand[0][0] __________________________________________________________________________________________________ block_8_expand_relu (ReLU) (None, 10, 10, 384) 0 block_8_expand_BN[0][0] __________________________________________________________________________________________________ block_8_depthwise (DepthwiseCon (None, 10, 10, 384) 3456 block_8_expand_relu[0][0] __________________________________________________________________________________________________ block_8_depthwise_BN (BatchNorm (None, 10, 10, 384) 1536 block_8_depthwise[0][0] __________________________________________________________________________________________________ block_8_depthwise_relu (ReLU) (None, 10, 10, 384) 0 block_8_depthwise_BN[0][0] __________________________________________________________________________________________________ block_8_project (Conv2D) (None, 10, 10, 64) 24576 block_8_depthwise_relu[0][0] __________________________________________________________________________________________________ block_8_project_BN (BatchNormal (None, 10, 10, 64) 256 block_8_project[0][0] __________________________________________________________________________________________________ block_8_add (Add) (None, 10, 10, 64) 0 block_7_add[0][0] block_8_project_BN[0][0] __________________________________________________________________________________________________ block_9_expand (Conv2D) (None, 10, 10, 384) 24576 block_8_add[0][0] __________________________________________________________________________________________________ block_9_expand_BN (BatchNormali (None, 10, 10, 384) 1536 block_9_expand[0][0] __________________________________________________________________________________________________ block_9_expand_relu (ReLU) (None, 10, 10, 384) 0 block_9_expand_BN[0][0] __________________________________________________________________________________________________ block_9_depthwise (DepthwiseCon (None, 10, 10, 384) 3456 block_9_expand_relu[0][0] __________________________________________________________________________________________________ block_9_depthwise_BN (BatchNorm (None, 10, 10, 384) 1536 block_9_depthwise[0][0] __________________________________________________________________________________________________ block_9_depthwise_relu (ReLU) (None, 10, 10, 384) 0 block_9_depthwise_BN[0][0] __________________________________________________________________________________________________ block_9_project (Conv2D) (None, 10, 10, 64) 24576 block_9_depthwise_relu[0][0] __________________________________________________________________________________________________ block_9_project_BN (BatchNormal (None, 10, 10, 64) 256 block_9_project[0][0] __________________________________________________________________________________________________ block_9_add (Add) (None, 10, 10, 64) 0 block_8_add[0][0] block_9_project_BN[0][0] __________________________________________________________________________________________________ block_10_expand (Conv2D) (None, 10, 10, 384) 24576 block_9_add[0][0] __________________________________________________________________________________________________ block_10_expand_BN (BatchNormal (None, 10, 10, 384) 1536 block_10_expand[0][0] __________________________________________________________________________________________________ block_10_expand_relu (ReLU) (None, 10, 10, 384) 0 block_10_expand_BN[0][0] __________________________________________________________________________________________________ block_10_depthwise (DepthwiseCo (None, 10, 10, 384) 3456 block_10_expand_relu[0][0] __________________________________________________________________________________________________ block_10_depthwise_BN (BatchNor (None, 10, 10, 384) 1536 block_10_depthwise[0][0] __________________________________________________________________________________________________ block_10_depthwise_relu (ReLU) (None, 10, 10, 384) 0 block_10_depthwise_BN[0][0] __________________________________________________________________________________________________ block_10_project (Conv2D) (None, 10, 10, 96) 36864 block_10_depthwise_relu[0][0] __________________________________________________________________________________________________ block_10_project_BN (BatchNorma (None, 10, 10, 96) 384 block_10_project[0][0] __________________________________________________________________________________________________ block_11_expand (Conv2D) (None, 10, 10, 576) 55296 block_10_project_BN[0][0] __________________________________________________________________________________________________ block_11_expand_BN (BatchNormal (None, 10, 10, 576) 2304 block_11_expand[0][0] __________________________________________________________________________________________________ block_11_expand_relu (ReLU) (None, 10, 10, 576) 0 block_11_expand_BN[0][0] __________________________________________________________________________________________________ block_11_depthwise (DepthwiseCo (None, 10, 10, 576) 5184 block_11_expand_relu[0][0] __________________________________________________________________________________________________ block_11_depthwise_BN (BatchNor (None, 10, 10, 576) 2304 block_11_depthwise[0][0] __________________________________________________________________________________________________ block_11_depthwise_relu (ReLU) (None, 10, 10, 576) 0 block_11_depthwise_BN[0][0] __________________________________________________________________________________________________ block_11_project (Conv2D) (None, 10, 10, 96) 55296 block_11_depthwise_relu[0][0] __________________________________________________________________________________________________ block_11_project_BN (BatchNorma (None, 10, 10, 96) 384 block_11_project[0][0] __________________________________________________________________________________________________ block_11_add (Add) (None, 10, 10, 96) 0 block_10_project_BN[0][0] block_11_project_BN[0][0] __________________________________________________________________________________________________ block_12_expand (Conv2D) (None, 10, 10, 576) 55296 block_11_add[0][0] __________________________________________________________________________________________________ block_12_expand_BN (BatchNormal (None, 10, 10, 576) 2304 block_12_expand[0][0] __________________________________________________________________________________________________ block_12_expand_relu (ReLU) (None, 10, 10, 576) 0 block_12_expand_BN[0][0] __________________________________________________________________________________________________ block_12_depthwise (DepthwiseCo (None, 10, 10, 576) 5184 block_12_expand_relu[0][0] __________________________________________________________________________________________________ block_12_depthwise_BN (BatchNor (None, 10, 10, 576) 2304 block_12_depthwise[0][0] __________________________________________________________________________________________________ block_12_depthwise_relu (ReLU) (None, 10, 10, 576) 0 block_12_depthwise_BN[0][0] __________________________________________________________________________________________________ block_12_project (Conv2D) (None, 10, 10, 96) 55296 block_12_depthwise_relu[0][0] __________________________________________________________________________________________________ block_12_project_BN (BatchNorma (None, 10, 10, 96) 384 block_12_project[0][0] __________________________________________________________________________________________________ block_12_add (Add) (None, 10, 10, 96) 0 block_11_add[0][0] block_12_project_BN[0][0] __________________________________________________________________________________________________ block_13_expand (Conv2D) (None, 10, 10, 576) 55296 block_12_add[0][0] __________________________________________________________________________________________________ block_13_expand_BN (BatchNormal (None, 10, 10, 576) 2304 block_13_expand[0][0] __________________________________________________________________________________________________ block_13_expand_relu (ReLU) (None, 10, 10, 576) 0 block_13_expand_BN[0][0] __________________________________________________________________________________________________ block_13_pad (ZeroPadding2D) (None, 11, 11, 576) 0 block_13_expand_relu[0][0] __________________________________________________________________________________________________ block_13_depthwise (DepthwiseCo (None, 5, 5, 576) 5184 block_13_pad[0][0] __________________________________________________________________________________________________ block_13_depthwise_BN (BatchNor (None, 5, 5, 576) 2304 block_13_depthwise[0][0] __________________________________________________________________________________________________ block_13_depthwise_relu (ReLU) (None, 5, 5, 576) 0 block_13_depthwise_BN[0][0] __________________________________________________________________________________________________ block_13_project (Conv2D) (None, 5, 5, 160) 92160 block_13_depthwise_relu[0][0] __________________________________________________________________________________________________ block_13_project_BN (BatchNorma (None, 5, 5, 160) 640 block_13_project[0][0] __________________________________________________________________________________________________ block_14_expand (Conv2D) (None, 5, 5, 960) 153600 block_13_project_BN[0][0] __________________________________________________________________________________________________ block_14_expand_BN (BatchNormal (None, 5, 5, 960) 3840 block_14_expand[0][0] __________________________________________________________________________________________________ block_14_expand_relu (ReLU) (None, 5, 5, 960) 0 block_14_expand_BN[0][0] __________________________________________________________________________________________________ block_14_depthwise (DepthwiseCo (None, 5, 5, 960) 8640 block_14_expand_relu[0][0] __________________________________________________________________________________________________ block_14_depthwise_BN (BatchNor (None, 5, 5, 960) 3840 block_14_depthwise[0][0] __________________________________________________________________________________________________ block_14_depthwise_relu (ReLU) (None, 5, 5, 960) 0 block_14_depthwise_BN[0][0] __________________________________________________________________________________________________ block_14_project (Conv2D) (None, 5, 5, 160) 153600 block_14_depthwise_relu[0][0] __________________________________________________________________________________________________ block_14_project_BN (BatchNorma (None, 5, 5, 160) 640 block_14_project[0][0] __________________________________________________________________________________________________ block_14_add (Add) (None, 5, 5, 160) 0 block_13_project_BN[0][0] block_14_project_BN[0][0] __________________________________________________________________________________________________ block_15_expand (Conv2D) (None, 5, 5, 960) 153600 block_14_add[0][0] __________________________________________________________________________________________________ block_15_expand_BN (BatchNormal (None, 5, 5, 960) 3840 block_15_expand[0][0] __________________________________________________________________________________________________ block_15_expand_relu (ReLU) (None, 5, 5, 960) 0 block_15_expand_BN[0][0] __________________________________________________________________________________________________ block_15_depthwise (DepthwiseCo (None, 5, 5, 960) 8640 block_15_expand_relu[0][0] __________________________________________________________________________________________________ block_15_depthwise_BN (BatchNor (None, 5, 5, 960) 3840 block_15_depthwise[0][0] __________________________________________________________________________________________________ block_15_depthwise_relu (ReLU) (None, 5, 5, 960) 0 block_15_depthwise_BN[0][0] __________________________________________________________________________________________________ block_15_project (Conv2D) (None, 5, 5, 160) 153600 block_15_depthwise_relu[0][0] __________________________________________________________________________________________________ block_15_project_BN (BatchNorma (None, 5, 5, 160) 640 block_15_project[0][0] __________________________________________________________________________________________________ block_15_add (Add) (None, 5, 5, 160) 0 block_14_add[0][0] block_15_project_BN[0][0] __________________________________________________________________________________________________ block_16_expand (Conv2D) (None, 5, 5, 960) 153600 block_15_add[0][0] __________________________________________________________________________________________________ block_16_expand_BN (BatchNormal (None, 5, 5, 960) 3840 block_16_expand[0][0] __________________________________________________________________________________________________ block_16_expand_relu (ReLU) (None, 5, 5, 960) 0 block_16_expand_BN[0][0] __________________________________________________________________________________________________ block_16_depthwise (DepthwiseCo (None, 5, 5, 960) 8640 block_16_expand_relu[0][0] __________________________________________________________________________________________________ block_16_depthwise_BN (BatchNor (None, 5, 5, 960) 3840 block_16_depthwise[0][0] __________________________________________________________________________________________________ block_16_depthwise_relu (ReLU) (None, 5, 5, 960) 0 block_16_depthwise_BN[0][0] __________________________________________________________________________________________________ block_16_project (Conv2D) (None, 5, 5, 320) 307200 block_16_depthwise_relu[0][0] __________________________________________________________________________________________________ block_16_project_BN (BatchNorma (None, 5, 5, 320) 1280 block_16_project[0][0] __________________________________________________________________________________________________ Conv_1 (Conv2D) (None, 5, 5, 1280) 409600 block_16_project_BN[0][0] __________________________________________________________________________________________________ Conv_1_bn (BatchNormalization) (None, 5, 5, 1280) 5120 Conv_1[0][0] __________________________________________________________________________________________________ out_relu (ReLU) (None, 5, 5, 1280) 0 Conv_1_bn[0][0] ================================================================================================== Total params: 2,257,984 Trainable params: 0 Non-trainable params: 2,257,984 _________________________________________________________________________
Explanation
The convolutional base created from the previous step is frozen and used as a feature extractor.
A classifier is added on top of it to train the top-level classifier.
Freezing is done by setting layer.trainable = False.
This step avoids the weights in a layer from getting updated during training.
MobileNet V2 has many layers, hence setting the model's entire trainable flag to False would freeze all the layers.
When layer.trainable = False, the BatchNormalization layer runs in inference mode, and won’t update mean and variance statistics.
When a model is unfreezed, it contains BatchNormalization layer to do fine-tuning.
This can be done by passing training = False when the base model is called.
Else, the updates applied to non-trainable weights will spoil what the model has learned.
- Related Articles
- How can Tensorflow and pre-trained model be used for fine tuning?
- How can Tensorflow and pre-trained model be used to create base model from pre-trained convnets?
- How can Tensorflow and pre-trained model be used to configure the dataset for performance?
- How can Tensorflow and pre-trained model be used to compile the model using Python?
- How can Tensorflow and pre-trained model be used to understand the learning curve?
- How can Tensorflow and pre-trained model be used to add classification head to the model?
- How can Tensorflow and pre-trained model be used to continue training the model using Python?
- How can Tensorflow be used with pre-trained model to rescale pixel values?
- How can Tensorflow and pre-trained model be used for evaluation and prediction of data using Python?
- How can Tensorflow and pre-trained model be used to chain data augmentation, rescaling and base model?
- How can Tensorflow and pre-trained model be used to visualize the data using Python?
- How can Tensorflow and pre-trained model after recompiling be used to visualize the data?
- How can Tensorflow used with the pre-trained model to compile the model?
- How can Tensorflow and re-trained model be used for data augmentation?
- How can Tensorflow be used with pre-trained model to build the training and validation dataset?
