
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How can data be scaled using scikit-learn library in Python?
Feature scaling is an important step in the data pre-processing stage in building machine learning algorithms. It helps normalize the data to fall within a specific range.
At times, it also helps in increasing the speed at which the calculations are performed by the machine.
Why it is needed?
Data fed to the learning algorithm as input should remain consistent and structured. All features of the input data should be on a single scale to effectively predict the values. But in real-world, data is unstructured, and most of the times, not on the same scale.
This is when normalization comes into picture. It is one of the most important data-preparation processes. It helps in changing values of the columns of the input dataset to fall on a same scale.
Let us understand how Scikit learn library can be used to perform feature scaling in Python.
Example
import numpy as np from sklearn import preprocessing input_data = np.array( [[34.78, 31.9, -65.5], [-16.5, 2.45, -83.5], [0.5, -87.98, 45.62], [5.9, 2.38, -55.82]]) data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1)) data_scaled_minmax = data_scaler_minmax.fit_transform(input_data) print ("\nThe scaled data is \n", data_scaled_minmax)
Output
The scaled data is [[1. 1. 0.1394052 ] [0. 0.75433767 0. ] [0.33151326 0. 1. ] [0.43681747 0.75375375 0.21437423]]
Explanation
The required packages are imported.
The input data is generated using the Numpy library.
The MinMaxScaler function present in the class ‘preprocessing ‘ is used to scale the data to fall in the range 0 and 1.
This way, any data in the array gets scaled down to a value between 0 and 1.
This scaled data is displayed on the console.
- Related Questions & Answers
- How can scikit learn library be used to preprocess data in Python?
- How can scikit-learn library be used to load data in Python?
- Explain how L1 Normalization can be implemented using scikit-learn library in Python?
- Explain how L2 Normalization can be implemented using scikit-learn library in Python?
- How can scikit learn library be used to upload and view an image in Python?
- How can scikit-learn library be used to get the resolution of an image in Python?
- Explain the basics of scikit-learn library in Python?
- What is hysteresis thresholding? How can it be achieved using scikit-learn in Python?
- How to eliminate mean values from feature vector using scikit-learn library in Python?
- Explain how scikit-learn library can be used to split the dataset for training and testing purposes in Python?
- Learning Model Building in Scikit-learn: A Python Machine Learning Library
- How can a specific tint be added to grayscale images in scikit-learn in Python?
- How can an input data array be transformed to a new data array using the process of streamlining using scikit-learn pipelining tools?
- How can scikit-learn be used to convert an image from RGB to grayscale in Python?
- How can data be represented visually using ‘seaborn’ library in Python?