Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Hamiltonian Cycle
In an undirected graph, the Hamiltonian path is a path, that visits each vertex exactly once, and the Hamiltonian cycle or circuit is a Hamiltonian path, that there is an edge from the last vertex to the first vertex.
In this problem, we will try to determine whether a graph contains a Hamiltonian cycle or not. And when a Hamiltonian cycle is present, also print the cycle.
Input and Output
Input: The adjacency matrix of a graph G(V, E).Output: The algorithm finds the Hamiltonian path of the given graph. For this case it is (0, 1, 2, 4, 3, 0). This graph has some other Hamiltonian paths. If one graph has no Hamiltonian path, the algorithm should return false.
Algorithm
isValid(v, k)
Input − Vertex v and position k.
Output − Checks whether placing v in the position k is valid or not.
Begin if there is no edge between node(k-1) to v, then return false if v is already taken, then return false return true; //otherwise it is valid End
cycleFound(node k)
Input − node of the graph.
Output − True when there is a Hamiltonian Cycle, otherwise false.
Begin if all nodes are included, then if there is an edge between nodes k and 0, then return true else return false; for all vertex v except starting point, do if isValid(v, k), then //when v is a valid edge add v into the path if cycleFound(k+1) is true, then return true otherwise remove v from the path done return false End
Example
#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
{0, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{0, 1, 0, 0, 1},
{1, 1, 0, 0, 1},
{0, 1, 1, 1, 0},
};
/* int graph[NODE][NODE] = {
{0, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{0, 1, 0, 0, 1},
{1, 1, 0, 0, 0},
{0, 1, 1, 0, 0},
}; */
int path[NODE];
void displayCycle() {
cout<<"Cycle: ";
for (int i = 0; i < NODE; i++)
cout << path[i] << " ";
cout << path[0] << endl; //print the first vertex again
}
bool isValid(int v, int k) {
if (graph [path[k-1]][v] == 0) //if there is no edge
return false;
for (int i = 0; i < k; i++) //if vertex is already taken, skip that
if (path[i] == v)
return false;
return true;
}
bool cycleFound(int k) {
if (k == NODE) { //when all vertices are in the path
if (graph[path[k-1]][ path[0] ] == 1 )
return true;
else
return false;
}
for (int v = 1; v < NODE; v++) { //for all vertices except starting point
if (isValid(v,k)) { //if possible to add v in the path
path[k] = v;
if (cycleFound (k+1) == true)
return true;
path[k] = -1; //when k vertex will not in the solution
}
}
return false;
}
bool hamiltonianCycle() {
for (int i = 0; i < NODE; i++)
path[i] = -1;
path[0] = 0; //first vertex as 0
if ( cycleFound(1) == false ) {
cout << "Solution does not exist"<<endl;
return false;
}
displayCycle();
return true;
}
int main() {
hamiltonianCycle();
}
Output
Cycle: 0 1 2 4 3 0
Advertisements
Output:
The algorithm finds the Hamiltonian path of the given graph. For this case it is (0, 1, 2, 4, 3, 0). This graph has some other Hamiltonian paths.
If one graph has no Hamiltonian path, the algorithm should return false.