
- Python Basic Tutorial
- Python - Home
- Python - Overview
- Python - Environment Setup
- Python - Basic Syntax
- Python - Comments
- Python - Variables
- Python - Data Types
- Python - Operators
- Python - Decision Making
- Python - Loops
- Python - Numbers
- Python - Strings
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - Date & Time
- Python - Functions
- Python - Modules
- Python - Files I/O
- Python - Exceptions
Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y floating array of points in Python
To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy. The method returns the pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Legendre polynomial. The dtype will be the same as the converted x.
The parameter, x, y is an array of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. The parameter, deg is a list of maximum degrees of the form [x_deg, y_deg].
Steps
At first, import the required library −
import numpy as np from numpy.polynomial import legendre as L
Create arrays of point coordinates, all of the same shape using the numpy.array() method −
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
Display the arrays −
print("Array1...\n",x) print("\nArray2...\n",y)
Display the datatype −
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
Check the Dimensions of both the arrays −
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
Check the Shape of both the arrays −
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy −
x_deg, y_deg = 2, 3 print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
Example
import numpy as np from numpy.polynomial import legendre as L # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
Output
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1.0000000e+00 1.7000000e+00 3.8350000e+00 9.7325000e+00 1.0000000e-01 1.7000000e-01 3.8350000e-01 9.7325000e-01 -4.8500000e-01 -8.2450000e-01 -1.8599750e+00 -4.7202625e+00] [ 1.0000000e+00 2.8000000e+00 1.1260000e+01 5.0680000e+01 1.4000000e+00 3.9200000e+00 1.5764000e+01 7.0952000e+01 2.4400000e+00 6.8320000e+00 2.7474400e+01 1.2365920e+02]]
- Related Articles
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y array of points in Python
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y, z array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y floating array of points in Python
- Generate a pseudo Vandermonde matrix of Chebyshev polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of Hermite polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y, z complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Hermite_e polynomial and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y array of points in Python
- Generate a Pseudo-Vandermonde matrix of given degree and x, y, z floating array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Hermite polynomial and x, y, z complex array of points in Python
- Generate a Pseudo Vandermonde matrix of the Laguerre polynomial and x, y, z complex array of points in Python
