# From the top of a $7\ m$ high building, the angle of elevation of the top of a cable tower is $60^o$ and the angle of depression of its foot is $45^o$. Determine the height of the tower.

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

9 Courses     2 eBooks

Given:

From the top of a $7 \mathrm{~m}$ high building, the angle of elevation of the top of a cable tower is $60^{\circ}$ and the angle of depression of its foot is $45^{\circ} .$

To do:

We have to determine the height of the tower.

Solution:

Let $AB$ be the height of the building and $CD$ be the height of the cable tower.

Let point $A$ be the point of observation.

From the figure,

$\mathrm{AB}=\mathrm{DE}=7 \mathrm{~m}, \angle \mathrm{ADB}=\angle \mathrm{EAD}=45^{\circ}, \angle \mathrm{CAE}=60^{\circ}$

Let the height of the cable tower be $\mathrm{CD}=h \mathrm{~m}$ and the distance between the building and the tower be $\mathrm{BD}=\mathrm{AE}=x \mathrm{~m}$.

This implies,

$\mathrm{CE}=h-7 \mathrm{~m}$

We know that,

$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

$=\frac{\text { AB }}{BD}$

$\Rightarrow \tan 45^{\circ}=\frac{7}{x}$

$\Rightarrow 1=\frac{7}{x}$

$\Rightarrow x=7 \mathrm{~m}$.........(i)

Similarly,

$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

$=\frac{\text { CE }}{AE}$

$\Rightarrow \tan 60^{\circ}=\frac{h-7}{x}$

$\Rightarrow \sqrt3=\frac{h-7}{7}$              [From (i)]

$\Rightarrow 7\sqrt3=h-7 \mathrm{~m}$

$\Rightarrow h=7\sqrt3+7 \mathrm{~m}$

$\Rightarrow h=7(\sqrt3+1) \mathrm{~m}$

Therefore, the height of the tower is $7(\sqrt3+1) \mathrm{~m}$.

Updated on 10-Oct-2022 13:23:32