# Finding Quadrant of a Coordinate with respect to a Circle in C++

We have one circle (center coordinate and radius), we have to find the quadrant of another given point (x, y) lies with respect to the center of the circle, if this is present in the circle, print quadrant, otherwise print error as the point is present outside.

Suppose the center of the circle is (h, k), the coordinate of the point is (x, y). We know that the equation of the circle is −

(𝑥−ℎ)2+(𝑦−𝑘)2+𝑟2=0

Now there are few conditions, based on which we can decide the result.

𝑖𝑓 (𝑥−ℎ)2+(𝑦−𝑘)2> 𝑟, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑖𝑓 (𝑥−ℎ)2+(𝑦−𝑘)2= 0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑖𝑓 (𝑥−ℎ)2+(𝑦−𝑘)2< 𝑟, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

## Example

Live Demo

#include<iostream>
#include<cmath>
using namespace std;
int getQuadrant(int h, int k, int rad, int x, int y) {
if (x == h && y == k)
return 0;
int val = pow((x - h), 2) + pow((y - k), 2);
return -1;
if (x > h && y >= k)
return 1;
if (x <= h && y > k)
return 2;
if (x < h && y <= k)
return 3;
if (x >= h && y < k)
return 4;
}
int main() {
int h = 0, k = 3;
int x = 1, y = 4;
}
1 Quadrant