Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$ in the following:
$f(x)\ =\ x^3\ –\ 6x^2\ +\ 11x\ –\ 6,\ g(x)\ =\ x^2\ +\ x\ +\ 1$
Given:
$f(x)\ =\ x^3\ –\ 6x^2\ +\ 11x\ –\ 6$ and $g(x)\ =\ x^2\ +\ x\ +\ 1$.
To do:
We have to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$.
Solution:
Dividend$f(x)\ =\ x^3\ –\ 6x^2\ +\ 11x\ –\ 6$
Divisor$g(x)\ =\ x^2\ +\ x\ +\ 1$
$x^2+x+1$)$x^3-6x^2+11x-6$($x-7$
$x^3+ x^2 + x$
--------------------------
$-7x^2+10x-6$
$-7x^2 - 7x -7$
-------------------------
$17x+1$
Therefore,
$q(x)=x-7$.
$r(x)=17x+1$.
- Related Articles
- Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$ in the following:$f(x)\ =\ 4x^3\ +\ 8x^2\ +\ 8x\ +\ 7,\ g(x)\ =\ 2x^2\ –\ x\ +\ 1$
- Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$ in the following:$f(x)\ =\ 15x^3\ –\ 20x^2\ +\ 13x\ –\ 12,\ g(x)\ =\ x^2\ –\ 2x\ +\ 2$
- Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$ in the following:$f(x)\ =\ 10x^4\ +\ 17x^3\ –\ 62x^2\ +\ 30x\ –\ 3,\ g(x)\ =\ 2x^2\ +\ 7x\ +\ 1$
- Using remainder theorem, find the remainder when $f( x)$ is divided by $g( x)$:$f( x)=4 x^{3}-12 x^{2}+11 x-3,\ g( x)=x+\frac{1}{2}$.
- Use Remainder theorem to find the remainder when \( f(x) \) is divided by \( g(x) \) in the following $f(x)=x^{2}-5 x+7, g(x)=x+3$.
- On dividing $x^3 - 3x^2 + x + 2$ by a polynomial $g(x)$, the quotient and remainder were $x - 2$ and $-2x + 4$, respectively. Find $g(x)$.
- In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not.$f(x) = x^3 - 6x^2 + 11x - 6, g(x) = x^2 - 3x + 2$
- In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not.$f(x) = x^3 - 6x^2 + 11x - 6; g(x) = x - 3$
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- divide the polynomial $p( x)$ by the polynomial $g( x)$ and find the quotient and remainder in each of the following: $( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
- In each of the following, using the remainder Theorem, find the remainder when $f(x)$ is divided by $g(x)$ and verify the result by actual division.$f(x) = x^3 + 4x^2 - 3x + 10, g(x) = x + 4$
- Using remainder theorem, find the remainder when: $f(x)=x^{2}+2ax+3a^{2},\ g( x)=x+a$.
- If \( f(x)=x^{2} \) and \( g(x)=x^{3}, \) then \( \frac{f(b)-f(a)}{g(b)-g(a)}= \)
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:$p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- Use the Factor Theorem to determine whether \( g(x) \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
Kickstart Your Career
Get certified by completing the course
Get Started