
Creational Design Patterns
- Design Patterns - Factory Pattern
- Abstract Factory Pattern
- Design Patterns - Singleton Pattern
- Design Patterns - Builder Pattern
- Design Patterns - Prototype Pattern
Structural Design Patterns
- Design Patterns - Adapter Pattern
- Design Patterns - Bridge Pattern
- Design Patterns - Filter Pattern
- Design Patterns - Composite Pattern
- Design Patterns - Decorator Pattern
- Design Patterns - Facade Pattern
- Design Patterns - Flyweight Pattern
- Design Patterns - Proxy Pattern
- Chain of Responsibility Pattern
Behavioral Design Patterns
- Design Patterns - Command Pattern
- Design Patterns - Interpreter Pattern
- Design Patterns - Iterator Pattern
- Design Patterns - Mediator Pattern
- Design Patterns - Memento Pattern
- Design Patterns - Observer Pattern
- Design Patterns - State Pattern
- Design Patterns - Strategy Pattern
- Design Patterns - Template Pattern
- Design Patterns - Visitor Pattern
J2EE Design Patterns
- Design Patterns - Null Object Pattern
- Design Patterns - MVC Pattern
- Business Delegate Pattern
- Composite Entity Pattern
- Data Access Object Pattern
- Front Controller Pattern
- Intercepting Filter Pattern
- Service Locator Pattern
- Transfer Object Pattern
Design Patterns Useful Resources
Design Pattern - Quick Guide
Design Patterns - Overview
Overview
Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time.
What is Gang of Four (GOF)?
In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development.
These authors are collectively known as Gang of Four (GOF). According to these authors design patterns are primarily based on the following principles of object orientated design.
Program to an interface not an implementation
Favor object composition over inheritance
Usage of Design Pattern
Design Patterns have two main usages in software development.
Common platform for developers
Design patterns provide a standard terminology and are specific to particular scenario. For example, a singleton design pattern signifies use of single object so all developers familiar with single design pattern will make use of single object and they can tell each other that program is following a singleton pattern.
Best Practices
Design patterns have been evolved over a long period of time and they provide best solutions to certain problems faced during software development. Learning these patterns helps unexperienced developers to learn software design in an easy and faster way.
Types of Design Patterns
As per the design pattern reference book Design Patterns - Elements of Reusable Object-Oriented Software , there are 23 design patterns which can be classified in three categories: Creational, Structural and Behavioral patterns. We'll also discuss another category of design pattern: J2EE design patterns.
S.N. | Pattern & Description |
---|---|
1 |
Creational Patterns These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new operator. This gives program more flexibility in deciding which objects need to be created for a given use case. |
2 |
Structural Patterns These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities. |
3 |
Behavioral Patterns These design patterns are specifically concerned with communication between objects. |
4 |
J2EE Patterns These design patterns are specifically concerned with the presentation tier. These patterns are identified by Sun Java Center. |
Design Patterns - Factory Pattern
Overview
Factory pattern is one of the most used design patterns in Java. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.
In Factory pattern, we create object without exposing the creation logic to the client and refer to newly created object using a common interface.
Implementation
We're going to create a Shape interface and concrete classes implementing the Shape interface. A factory class ShapeFactory is defined as a next step.
FactoryPatternDemo, our demo class will use ShapeFactory to get a Shape object. It will pass information (CIRCLE / RECTANGLE / SQUARE) to ShapeFactory to get the type of object it needs.

Step 1
Create an interface.
Shape.java
package com.tutorialspoint; public interface Shape { void draw(); }
Step 2
Create concrete classes implementing the same interface.
Rectangle.java
package com.tutorialspoint; public class Rectangle implements Shape { @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } }
Square.java
package com.tutorialspoint; public class Square implements Shape { @Override public void draw() { System.out.println("Inside Square::draw() method."); } }
Circle.java
package com.tutorialspoint; public class Circle implements Shape { @Override public void draw() { System.out.println("Inside Circle::draw() method."); } }
Step 3
Create a Factory to generate object of concrete class based on given information.
ShapeFactory.java
package com.tutorialspoint; public class ShapeFactory { //use getShape method to get object of type shape public Shape getShape(String shapeType){ if(shapeType == null){ return null; } if(shapeType.equalsIgnoreCase("CIRCLE")){ return new Circle(); } else if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new Rectangle(); } else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); } return null; } }
Example - Usage of Factory Design Pattern
Use the Factory to get object of concrete class by passing an information such as type.
FactoryPatternDemo.java
package com.tutorialspoint; public class FactoryPatternDemo { public static void main(String[] args) { ShapeFactory shapeFactory = new ShapeFactory(); //get an object of Circle and call its draw method. Shape shape1 = shapeFactory.getShape("CIRCLE"); //call draw method of Circle shape1.draw(); //get an object of Rectangle and call its draw method. Shape shape2 = shapeFactory.getShape("RECTANGLE"); //call draw method of Rectangle shape2.draw(); //get an object of Square and call its draw method. Shape shape3 = shapeFactory.getShape("SQUARE"); //call draw method of square shape3.draw(); } } class ShapeFactory { //use getShape method to get object of type shape public Shape getShape(String shapeType){ if(shapeType == null){ return null; } if(shapeType.equalsIgnoreCase("CIRCLE")){ return new Circle(); } else if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new Rectangle(); } else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); } return null; } } interface Shape { void draw(); } class Rectangle implements Shape { @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } } class Circle implements Shape { @Override public void draw() { System.out.println("Inside Circle::draw() method."); } } class Square implements Shape { @Override public void draw() { System.out.println("Inside Square::draw() method."); } }
Output
Verify the output.
Inside Circle::draw() method. Inside Rectangle::draw() method. Inside Square::draw() method.
Design Patterns - Abstract Factory Pattern
Overview
Abstract Factory patterns work around a super-factory which creates other factories. This factory is also called as factory of factories. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.
In Abstract Factory pattern an interface is responsible for creating a factory of related objects without explicitly specifying their classes. Each generated factory can give the objects as per the Factory pattern.
Implementation
We are going to create a Shape interface and a concrete class implementing it. We create an abstract factory class AbstractFactory as next step. Factory class ShapeFactory is defined, which extends AbstractFactory. A factory creator/generator class FactoryProducer is created.
AbstractFactoryPatternDemo, our demo class uses FactoryProducer to get a AbstractFactory object. It will pass information (CIRCLE / RECTANGLE / SQUARE for Shape) to AbstractFactory to get the type of object it needs.

Step 1
Create an interface for Shapes.
Shape.java
package com.tutorialspoint; public interface Shape { void draw(); }
Step 2
Create concrete classes implementing the same interface.
RoundedRectangle.java
package com.tutorialspoint; public class RoundedRectangle implements Shape { @Override public void draw() { System.out.println("Inside RoundedRectangle::draw() method."); } }
RoundedSquare.java
package com.tutorialspoint; public class RoundedSquare implements Shape { @Override public void draw() { System.out.println("Inside RoundedSquare::draw() method."); } }
Rectangle.java
package com.tutorialspoint; public class Rectangle implements Shape { @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } }
Square.java
package com.tutorialspoint; public class Square implements Shape { @Override public void draw() { System.out.println("Inside Square::draw() method."); } }
Step 3
Create an Abstract class to get factories for Normal and Rounded Shape Objects.
AbstractFactory.java
package com.tutorialspoint; public abstract class AbstractFactory { abstract Shape getShape(String shapeType) ; }
Step 4
Create Factory classes extending AbstractFactory to generate object of concrete class based on given information.
ShapeFactory.java
package com.tutorialspoint; public class ShapeFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new Rectangle(); }else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); } return null; } }
RoundedShapeFactory.java
package com.tutorialspoint; public class RoundedShapeFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new RoundedRectangle(); }else if(shapeType.equalsIgnoreCase("SQUARE")){ return new RoundedSquare(); } return null; } }
Step 5
Create a Factory generator/producer class to get factories by passing an information such as Shape
FactoryProducer.java
package com.tutorialspoint; public class FactoryProducer { public static AbstractFactory getFactory(boolean rounded){ if(rounded){ return new RoundedShapeFactory(); }else{ return new ShapeFactory(); } } }
Example - Usage of Abstract Factory Pattern
Use the FactoryProducer to get AbstractFactory in order to get factories of concrete classes by passing an information such as type.
AbstractFactoryPatternDemo.java
package com.tutorialspoint; public class AbstractFactoryPatternDemo { public static void main(String[] args) { //get shape factory AbstractFactory shapeFactory = FactoryProducer.getFactory(false); //get an object of Shape Rectangle Shape shape1 = shapeFactory.getShape("RECTANGLE"); //call draw method of Shape Rectangle shape1.draw(); //get an object of Shape Square Shape shape2 = shapeFactory.getShape("SQUARE"); //call draw method of Shape Square shape2.draw(); //get shape factory AbstractFactory shapeFactory1 = FactoryProducer.getFactory(true); //get an object of Shape Rectangle Shape shape3 = shapeFactory1.getShape("RECTANGLE"); //call draw method of Shape Rectangle shape3.draw(); //get an object of Shape Square Shape shape4 = shapeFactory1.getShape("SQUARE"); //call draw method of Shape Square shape4.draw(); } } class FactoryProducer { public static AbstractFactory getFactory(boolean rounded){ if(rounded){ return new RoundedShapeFactory(); }else{ return new ShapeFactory(); } } } interface Shape { void draw(); } class RoundedRectangle implements Shape { @Override public void draw() { System.out.println("Inside RoundedRectangle::draw() method."); } } class RoundedSquare implements Shape { @Override public void draw() { System.out.println("Inside RoundedSquare::draw() method."); } } class Rectangle implements Shape { @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } } class Square implements Shape { @Override public void draw() { System.out.println("Inside Square::draw() method."); } } abstract class AbstractFactory { abstract Shape getShape(String shapeType) ; } class ShapeFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new Rectangle(); }else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); } return null; } } class RoundedShapeFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new RoundedRectangle(); }else if(shapeType.equalsIgnoreCase("SQUARE")){ return new RoundedSquare(); } return null; } }
Output
Verify the output.
Inside Rectangle::draw() method. Inside Square::draw() method. Inside RoundedRectangle::draw() method. Inside RoundedSquare::draw() method.
Design Patterns - Singleton Pattern
Overview
Singleton pattern is one of the simplest design patterns in Java. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.
This pattern involves a single class which is responsible to create an object while making sure that only single object gets created. This class provides a way to access its only object which can be accessed directly without need to instantiate the object of the class.
Implementation
We're going to create a SingleObject class. SingleObject class have its constructor as private and have a static instance of itself.
SingleObject class provides a static method to get its static instance to outside world. SingletonPatternDemo, our demo class will use SingleObject class to get a SingleObject object.

Step 1
Create a Singleton Class.
SingleObject.java
package com.tutorialspoint; public class SingleObject { //create an object of SingleObject private static SingleObject instance = new SingleObject(); //make the constructor private so that this class cannot be //instantiated private SingleObject(){} //Get the only object available public static SingleObject getInstance(){ return instance; } public void showMessage(){ System.out.println("Hello World!"); } }
Example - Usage of Singleton Design Pattern
Get the only object from the singleton class.
SingletonPatternDemo.java
package com.tutorialspoint; public class SingletonPatternDemo { public static void main(String[] args) { //illegal construct //Compile Time Error: The constructor SingleObject() is not visible //SingleObject object = new SingleObject(); //Get the only object available SingleObject object = SingleObject.getInstance(); //show the message object.showMessage(); } } class SingleObject { //create an object of SingleObject private static SingleObject instance = new SingleObject(); //make the constructor private so that this class cannot be //instantiated private SingleObject(){} //Get the only object available public static SingleObject getInstance(){ return instance; } public void showMessage(){ System.out.println("Hello World!"); } }
Output
Verify the output.
Hello World!
Design Patterns - Builder Pattern
Overview
Builder pattern builds a complex object using simple objects and using a step by step approach. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.
A Builder class builds the final object step by step. This builder is independent of other objects.
Implementation
We have considered a business case of fast-food restaurant where a typical meal could be a burger and a cold drink. Burger could be either a Veg Burger or Chicken Burger and will be packed by a wrapper. Cold drink could be either a coke or pepsi and will be packed in a bottle.
We are going to create an Item interface representing food items such as burgers and cold drinks and concrete classes implementing the Item interface and a Packing interface representing packaging of food items and concrete classes implementing the Packing interface as burger would be packed in wrapper and cold drink would be packed as bottle.
We then create a Meal class having ArrayList of Item and a MealBuilder to build different types of Meal objects by combining Item. BuilderPatternDemo, our demo class will use MealBuilder to build a Meal.

Step 1
Create an interface Item representing food item and packing.
Item.java
package com.tutorialspoint; public interface Item { public String name(); public Packing packing(); public float price(); }
Packing.java
package com.tutorialspoint; public interface Packing { public String pack(); }
Step 2
Create concrete classes implementing the Packing interface.
Wrapper.java
package com.tutorialspoint; public class Wrapper implements Packing { @Override public String pack() { return "Wrapper"; } }
Bottle.java
package com.tutorialspoint; public class Bottle implements Packing { @Override public String pack() { return "Bottle"; } }
Step 3
Create abstract classes implementing the item interface providing default functionalities.
Burger.java
package com.tutorialspoint; public abstract class Burger implements Item { @Override public Packing packing() { return new Wrapper(); } @Override public abstract float price(); }
ColdDrink.java
package com.tutorialspoint; public abstract class ColdDrink implements Item { @Override public Packing packing() { return new Bottle(); } @Override public abstract float price(); }
Step 4
Create concrete classes extending Burger and ColdDrink classes
VegBurger.java
package com.tutorialspoint; public class VegBurger extends Burger { @Override public float price() { return 25.0f; } @Override public String name() { return "Veg Burger"; } }
ChickenBurger.java
package com.tutorialspoint; public class ChickenBurger extends Burger { @Override public float price() { return 50.5f; } @Override public String name() { return "Chicken Burger"; } }
Coke.java
package com.tutorialspoint; public class Coke extends ColdDrink { @Override public float price() { return 30.0f; } @Override public String name() { return "Coke"; } }
Pepsi.java
package com.tutorialspoint; public class Pepsi extends ColdDrink { @Override public float price() { return 35.0f; } @Override public String name() { return "Pepsi"; } }
Step 5
Create a Meal class having Item objects defined above.
Meal.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class Meal { private List<Item> items = new ArrayList<Item>(); public void addItem(Item item){ items.add(item); } public float getCost(){ float cost = 0.0f; for (Item item : items) { cost += item.price(); } return cost; } public void showItems(){ for (Item item : items) { System.out.print("Item : " + item.name()); System.out.print(", Packing : " + item.packing().pack()); System.out.println(", Price : " + item.price()); } } }
Step 6
Create a MealBuilder class, the actual builder class responsible to create Meal objects.
MealBuilder.java
package com.tutorialspoint; public class MealBuilder { public Meal prepareVegMeal (){ Meal meal = new Meal(); meal.addItem(new VegBurger()); meal.addItem(new Coke()); return meal; } public Meal prepareNonVegMeal (){ Meal meal = new Meal(); meal.addItem(new ChickenBurger()); meal.addItem(new Pepsi()); return meal; } }
Example - Usage of Builder Design Pattern
BuiderPatternDemo uses MealBuider to demonstrate builder pattern.
BuilderPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class BuilderPatternDemo { public static void main(String[] args) { MealBuilder mealBuilder = new MealBuilder(); Meal vegMeal = mealBuilder.prepareVegMeal(); System.out.println("Veg Meal"); vegMeal.showItems(); System.out.println("Total Cost: " + vegMeal.getCost()); Meal nonVegMeal = mealBuilder.prepareNonVegMeal(); System.out.println("\n\nNon-Veg Meal"); nonVegMeal.showItems(); System.out.println("Total Cost: " + nonVegMeal.getCost()); } } interface Item { public String name(); public Packing packing(); public float price(); } interface Packing { public String pack(); } class Wrapper implements Packing { @Override public String pack() { return "Wrapper"; } } class Bottle implements Packing { @Override public String pack() { return "Bottle"; } } abstract class Burger implements Item { @Override public Packing packing() { return new Wrapper(); } @Override public abstract float price(); } abstract class ColdDrink implements Item { @Override public Packing packing() { return new Bottle(); } @Override public abstract float price(); } class VegBurger extends Burger { @Override public float price() { return 25.0f; } @Override public String name() { return "Veg Burger"; } } class ChickenBurger extends Burger { @Override public float price() { return 50.5f; } @Override public String name() { return "Chicken Burger"; } } class Coke extends ColdDrink { @Override public float price() { return 30.0f; } @Override public String name() { return "Coke"; } } class Pepsi extends ColdDrink { @Override public float price() { return 35.0f; } @Override public String name() { return "Pepsi"; } } class Meal { private List<Item> items = new ArrayList<Item>(); public void addItem(Item item){ items.add(item); } public float getCost(){ float cost = 0.0f; for (Item item : items) { cost += item.price(); } return cost; } public void showItems(){ for (Item item : items) { System.out.print("Item : " + item.name()); System.out.print(", Packing : " + item.packing().pack()); System.out.println(", Price : " + item.price()); } } } class MealBuilder { public Meal prepareVegMeal (){ Meal meal = new Meal(); meal.addItem(new VegBurger()); meal.addItem(new Coke()); return meal; } public Meal prepareNonVegMeal (){ Meal meal = new Meal(); meal.addItem(new ChickenBurger()); meal.addItem(new Pepsi()); return meal; } }
Output
Verify the output.
Veg Meal Item : Veg Burger, Packing : Wrapper, Price : 25.0 Item : Coke, Packing : Bottle, Price : 30.0 Total Cost: 55.0 Non-Veg Meal Item : Chicken Burger, Packing : Wrapper, Price : 50.5 Item : Pepsi, Packing : Bottle, Price : 35.0 Total Cost: 85.5
Design Patterns - Prototype Pattern
Overview
Prototype pattern refers to creating duplicate object while keeping performance in mind. This type of design pattern comes under creational pattern as this pattern provides one of the best ways to create an object.
This pattern involves implementing a prototype interface which tells to create a clone of the current object. This pattern is used when creation of object directly is costly. For example, an object is to be created after a costly database operation. We can cache the object, returns its clone on next request and update the database as and when needed thus reducing database calls.
Implementation
We're going to create an abstract class Shape and concrete classes extending the Shape class. A class ShapeCache is defined as a next step which stores shape objects in a Hashtable and returns their clone when requested.
PrototypPatternDemo, our demo class will use ShapeCache class to get a Shape object.

Step 1
Create an abstract class implementing Clonable interface.
Shape.java
package com.tutorialpoint; public abstract class Shape implements Cloneable { private String id; protected String type; abstract void draw(); public String getType(){ return type; } public String getId() { return id; } public void setId(String id) { this.id = id; } public Object clone() { Object clone = null; try { clone = super.clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return clone; } }
Step 2
Create concrete classes extending the above class.
Rectangle.java
package com.tutorialspoint; public class Rectangle extends Shape { public Rectangle(){ type = "Rectangle"; } @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } }
Square.java
package com.tutorialspoint; public class Square extends Shape { public Square(){ type = "Square"; } @Override public void draw() { System.out.println("Inside Square::draw() method."); } }
Circle.java
package com.tutorialspoint; public class Circle extends Shape { public Circle(){ type = "Circle"; } @Override public void draw() { System.out.println("Inside Circle::draw() method."); } }
Step 3
Create a class to get concrete classes from database and store them in a Hashtable.
ShapeCache.java
package com.tutorialspoint; import java.util.Hashtable; public class ShapeCache { private static Hashtable<String, Shape> shapeMap = new Hashtable<String, Shape>(); public static Shape getShape(String shapeId) { Shape cachedShape = shapeMap.get(shapeId); return (Shape) cachedShape.clone(); } // for each shape run database query and create shape // shapeMap.put(shapeKey, shape); // for example, we are adding three shapes public static void loadCache() { Circle circle = new Circle(); circle.setId("1"); shapeMap.put(circle.getId(),circle); Square square = new Square(); square.setId("2"); shapeMap.put(square.getId(),square); Rectangle rectangle = new Rectangle(); rectangle.setId("3"); shapeMap.put(rectangle.getId(), rectangle); } }
Example - Usage of Prototype Design Pattern
PrototypePatternDemo uses ShapeCache class to get clones of shapes stored in a Hashtable.
PrototypePatternDemo.java
package com.tutorialspoint; import java.util.Hashtable; public class PrototypePatternDemo { public static void main(String[] args) { ShapeCache.loadCache(); Shape clonedShape = (Shape) ShapeCache.getShape("1"); System.out.println("Shape : " + clonedShape.getType()); Shape clonedShape2 = (Shape) ShapeCache.getShape("2"); System.out.println("Shape : " + clonedShape2.getType()); Shape clonedShape3 = (Shape) ShapeCache.getShape("3"); System.out.println("Shape : " + clonedShape3.getType()); } } class ShapeCache { private static Hashtable<String, Shape> shapeMap = new Hashtable<String, Shape>(); public static Shape getShape(String shapeId) { Shape cachedShape = shapeMap.get(shapeId); return (Shape) cachedShape.clone(); } // for each shape run database query and create shape // shapeMap.put(shapeKey, shape); // for example, we are adding three shapes public static void loadCache() { Circle circle = new Circle(); circle.setId("1"); shapeMap.put(circle.getId(),circle); Square square = new Square(); square.setId("2"); shapeMap.put(square.getId(),square); Rectangle rectangle = new Rectangle(); rectangle.setId("3"); shapeMap.put(rectangle.getId(), rectangle); } } abstract class Shape implements Cloneable { private String id; protected String type; abstract void draw(); public String getType(){ return type; } public String getId() { return id; } public void setId(String id) { this.id = id; } public Object clone() { Object clone = null; try { clone = super.clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return clone; } } class Rectangle extends Shape { public Rectangle(){ type = "Rectangle"; } @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } } class Square extends Shape { public Square(){ type = "Square"; } @Override public void draw() { System.out.println("Inside Square::draw() method."); } } class Circle extends Shape { public Circle(){ type = "Circle"; } @Override public void draw() { System.out.println("Inside Circle::draw() method."); } }
Output
Verify the output.
Shape : Circle Shape : Square Shape : Rectangle
Design Patterns - Adapter Pattern
Overview
Adapter pattern works as a bridge between two incompatible interfaces. This type of design pattern comes under structural pattern as this pattern combines the capability of two independent interfaces.
This pattern involves a single class which is responsible to join functionalities of independent or incompatible interfaces. A real life example could be a case of card reader which acts as an adapter between memory card and a laptop. You plugin the memory card into card reader and card reader into the laptop so that memory card can be read via laptop.
We are demonstrating use of Adapter pattern via following example in which an audio player device can play mp3 files only and wants to use an advanced audio player capable of playing vlc and mp4 files.
Implementation
We have a MediaPlayer interface and a concrete class AudioPlayer implementing the MediaPlayer interface. AudioPlayer can play mp3 format audio files by default.
We are having another interface AdvancedMediaPlayer and concrete classes implementing the AdvancedMediaPlayer interface. These classes can play vlc and mp4 format files.
We want to make AudioPlayer to play other formats as well. To attain this, we have created an adapter class MediaAdapter which implements the MediaPlayer interface and uses AdvancedMediaPlayer objects to play the required format.
AudioPlayer uses the adapter class MediaAdapter passing it the desired audio type without knowing the actual class which can play the desired format. AdapterPatternDemo, our demo class will use AudioPlayer class to play various formats.

Step 1
Create interfaces for Media Player and Advanced Media Player.
MediaPlayer.java
package com.tutorialspoint; public interface MediaPlayer { public void play(String audioType, String fileName); }
AdvancedMediaPlayer.java
package com.tutorialspoint; public interface AdvancedMediaPlayer { public void playVlc(String fileName); public void playMp4(String fileName); }
Step 2
Create concrete classes implementing the AdvancedMediaPlayer interface.
VlcPlayer.java
package com.tutorialspoint; public class VlcPlayer implements AdvancedMediaPlayer{ @Override public void playVlc(String fileName) { System.out.println("Playing vlc file. Name: "+ fileName); } @Override public void playMp4(String fileName) { //do nothing } }
Mp4Player.java
package com.tutorialspoint; public class Mp4Player implements AdvancedMediaPlayer{ @Override public void playVlc(String fileName) { //do nothing } @Override public void playMp4(String fileName) { System.out.println("Playing mp4 file. Name: "+ fileName); } }
Step 3
Create adapter class implementing the MediaPlayer interface.
MediaAdapter.java
package com.tutorialspoint; public class MediaAdapter implements MediaPlayer { AdvancedMediaPlayer advancedMusicPlayer; public MediaAdapter(String audioType){ if(audioType.equalsIgnoreCase("vlc") ){ advancedMusicPlayer = new VlcPlayer(); }else if (audioType.equalsIgnoreCase("mp4")){ advancedMusicPlayer = new Mp4Player(); } } @Override public void play(String audioType, String fileName) { if(audioType.equalsIgnoreCase("vlc")){ advancedMusicPlayer.playVlc(fileName); } else if(audioType.equalsIgnoreCase("mp4")){ advancedMusicPlayer.playMp4(fileName); } } }
Step 4
Create concrete class implementing the MediaPlayer interface.
AudioPlayer.java
package com.tutorialspoint; public class AudioPlayer implements MediaPlayer { MediaAdapter mediaAdapter; @Override public void play(String audioType, String fileName) { //inbuilt support to play mp3 music files if(audioType.equalsIgnoreCase("mp3")){ System.out.println("Playing mp3 file. Name: " + fileName); } //mediaAdapter is providing support to play other file formats else if(audioType.equalsIgnoreCase("vlc") || audioType.equalsIgnoreCase("mp4")){ mediaAdapter = new MediaAdapter(audioType); mediaAdapter.play(audioType, fileName); } else{ System.out.println("Invalid media. " + audioType + " format not supported"); } } }
Example - Usage of Adapter Pattern
Use the AudioPlayer to play different types of audio formats.
AdapterPatternDemo.java
package com.tutorialspoint; public class AdapterPatternDemo { public static void main(String[] args) { AudioPlayer audioPlayer = new AudioPlayer(); audioPlayer.play("mp3", "beyond the horizon.mp3"); audioPlayer.play("mp4", "alone.mp4"); audioPlayer.play("vlc", "far far away.vlc"); audioPlayer.play("avi", "mind me.avi"); } } interface MediaPlayer { public void play(String audioType, String fileName); } interface AdvancedMediaPlayer { public void playVlc(String fileName); public void playMp4(String fileName); } class VlcPlayer implements AdvancedMediaPlayer{ @Override public void playVlc(String fileName) { System.out.println("Playing vlc file. Name: "+ fileName); } @Override public void playMp4(String fileName) { //do nothing } } class Mp4Player implements AdvancedMediaPlayer{ @Override public void playVlc(String fileName) { //do nothing } @Override public void playMp4(String fileName) { System.out.println("Playing mp4 file. Name: "+ fileName); } } class MediaAdapter implements MediaPlayer { AdvancedMediaPlayer advancedMusicPlayer; public MediaAdapter(String audioType){ if(audioType.equalsIgnoreCase("vlc") ){ advancedMusicPlayer = new VlcPlayer(); }else if (audioType.equalsIgnoreCase("mp4")){ advancedMusicPlayer = new Mp4Player(); } } @Override public void play(String audioType, String fileName) { if(audioType.equalsIgnoreCase("vlc")){ advancedMusicPlayer.playVlc(fileName); } else if(audioType.equalsIgnoreCase("mp4")){ advancedMusicPlayer.playMp4(fileName); } } } class AudioPlayer implements MediaPlayer { MediaAdapter mediaAdapter; @Override public void play(String audioType, String fileName) { //inbuilt support to play mp3 music files if(audioType.equalsIgnoreCase("mp3")){ System.out.println("Playing mp3 file. Name: " + fileName); } //mediaAdapter is providing support to play other file formats else if(audioType.equalsIgnoreCase("vlc") || audioType.equalsIgnoreCase("mp4")){ mediaAdapter = new MediaAdapter(audioType); mediaAdapter.play(audioType, fileName); } else{ System.out.println("Invalid media. " + audioType + " format not supported"); } } }
Output
Verify the output.
Playing mp3 file. Name: beyond the horizon.mp3 Playing mp4 file. Name: alone.mp4 Playing vlc file. Name: far far away.vlc Invalid media. avi format not supported
Design Patterns - Bridge Pattern
Overview
Bridge is used when we need to decouple an abstraction from its implementation so that the two can vary independently. This type of design pattern comes under structural pattern as this pattern decouples implementation class and abstract class by providing a bridge structure between them.
This pattern involves an interface which acts as a bridge which makes the functionality of concrete classes independent from interface implementer classes. Both types of classes can be altered structurally without affecting each other.
We are demonstrating use of Bridge pattern via following example in which a circle can be drawn in different colors using same abstract class method but different bridge implementer classes.
Implementation
We have a DrawAPI interface which is acting as a bridge implementer and concrete classes RedCircle, GreenCircle implementing the DrawAPI interface. Shape is an abstract class and will use object of DrawAPI. BridgePatternDemo, our demo class will use Shape class to draw different colored circle.

Step 1
Create bridge implementer interface.
DrawAPI.java
package com.tutorialspoint; public interface DrawAPI { public void drawCircle(int radius, int x, int y); }
Step 2
Create concrete bridge implementer classes implementing the DrawAPI interface.
RedCircle.java
package com.tutorialspoint; public class RedCircle implements DrawAPI { @Override public void drawCircle(int radius, int x, int y) { System.out.println("Drawing Circle[ color: red, radius: " + radius + ", x: " + x + ", " + y + "]"); } }
GreenCircle.java
package com.tutorialspoint; public class GreenCircle implements DrawAPI { @Override public void drawCircle(int radius, int x, int y) { System.out.println("Drawing Circle[ color: green, radius: " + radius + ", x: " + x + ", " + y + "]"); } }
Step 3
Create an abstract class Shape using the DrawAPI interface.
Shape.java
package com.tutorialspoint; public abstract class Shape { protected DrawAPI drawAPI; protected Shape(DrawAPI drawAPI){ this.drawAPI = drawAPI; } public abstract void draw(); }
Step 4
Create concrete class implementing the Shape interface.
Circle.java
package com.tutorialspoint; public class Circle extends Shape { private int x, y, radius; public Circle(int x, int y, int radius, DrawAPI drawAPI) { super(drawAPI); this.x = x; this.y = y; this.radius = radius; } public void draw() { drawAPI.drawCircle(radius,x,y); } }
Example - Usage of Bridge Pattern Demo
Use the Shape and DrawAPI classes to draw different colored circles.
BridgePatternDemo.java
package com.tutorialspoint; public class BridgePatternDemo { public static void main(String[] args) { Shape redCircle = new Circle(100,100, 10, new RedCircle()); Shape greenCircle = new Circle(100,100, 10, new GreenCircle()); redCircle.draw(); greenCircle.draw(); } } interface DrawAPI { public void drawCircle(int radius, int x, int y); } class RedCircle implements DrawAPI { @Override public void drawCircle(int radius, int x, int y) { System.out.println("Drawing Circle[ color: red, radius: " + radius + ", x: " + x + ", " + y + "]"); } } class GreenCircle implements DrawAPI { @Override public void drawCircle(int radius, int x, int y) { System.out.println("Drawing Circle[ color: green, radius: " + radius + ", x: " + x + ", " + y + "]"); } } abstract class Shape { protected DrawAPI drawAPI; protected Shape(DrawAPI drawAPI){ this.drawAPI = drawAPI; } public abstract void draw(); } class Circle extends Shape { private int x, y, radius; public Circle(int x, int y, int radius, DrawAPI drawAPI) { super(drawAPI); this.x = x; this.y = y; this.radius = radius; } public void draw() { drawAPI.drawCircle(radius,x,y); } }
Output
Verify the output.
Drawing Circle[ color: red, radius: 10, x: 100, 100] Drawing Circle[ color: green, radius: 10, x: 100, 100]
Design Patterns - Filter Pattern
Overview
Filter pattern or Criteria pattern is a design pattern that enables developers to filter a set of objects using different criteria and chaining them in a decoupled way through logical operations. This type of design pattern comes under structural pattern as this pattern combines multiple criteria to obtain single criteria.
Implementation
We're going to create a Person object, Criteria interface and concrete classes implementing this interface to filter list of Person objects. CriteriaPatternDemo, our demo class uses Criteria objects to filter List of Person objects based on various criteria and their combinations.

Step 1
Create a class on which criteria is to be applied.
Person.java
package com.tutorialspoint; public class Person { private String name; private String gender; private String maritalStatus; public Person(String name, String gender, String maritalStatus){ this.name = name; this.gender = gender; this.maritalStatus = maritalStatus; } public String getName() { return name; } public String getGender() { return gender; } public String getMaritalStatus() { return maritalStatus; } }
Step 2
Create an interface for Criteria.
Criteria.java
package com.tutorialspoint; import java.util.List; public interface Criteria { public List<Person> meetCriteria(List<Person> persons); }
Step 3
Create concrete classes implementing the Criteria interface.
CriteriaMale.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CriteriaMale implements Criteria { @Override public List<Person> meetCriteria(List<Person> persons) { List<Person> malePersons = new ArrayList<Person>(); for (Person person : persons) { if(person.getGender().equalsIgnoreCase("MALE")){ malePersons.add(person); } } return malePersons; } }
CriteriaFemale.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CriteriaFemale implements Criteria { @Override public List<Person> meetCriteria(List<Person> persons) { List<Person> femalePersons = new ArrayList<Person>(); for (Person person : persons) { if(person.getGender().equalsIgnoreCase("FEMALE")){ femalePersons.add(person); } } return femalePersons; } }
CriteriaSingle.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CriteriaSingle implements Criteria { @Override public List<Person> meetCriteria(List<Person> persons) { List<Person> singlePersons = new ArrayList<Person>(); for (Person person : persons) { if(person.getMaritalStatus().equalsIgnoreCase("SINGLE")){ singlePersons.add(person); } } return singlePersons; } }
AndCriteria.java
package com.tutorialspoint; import java.util.List; public class AndCriteria implements Criteria { private Criteria criteria; private Criteria otherCriteria; public AndCriteria(Criteria criteria, Criteria otherCriteria) { this.criteria = criteria; this.otherCriteria = otherCriteria; } @Override public List<Person> meetCriteria(List<Person> persons) { List<Person> firstCriteriaPersons = criteria.meetCriteria(persons); return otherCriteria.meetCriteria(firstCriteriaPersons); } }
OrCriteria.java
package com.tutorialspoint; import java.util.List; public class OrCriteria implements Criteria { private Criteria criteria; private Criteria otherCriteria; public OrCriteria(Criteria criteria, Criteria otherCriteria) { this.criteria = criteria; this.otherCriteria = otherCriteria; } @Override public List<Person> meetCriteria(List<Person> persons) { List<Person> firstCriteriaItems = criteria.meetCriteria(persons); List<Person> otherCriteriaItems = otherCriteria.meetCriteria(persons); for (Person person : otherCriteriaItems) { if(!firstCriteriaItems.contains(person)){ firstCriteriaItems.add(person); } } return firstCriteriaItems; } }
Example - Usage of Filter Pattern
Use different Criteria and their combination to filter out persons.
CriteriaPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CriteriaPatternDemo { public static void main(String[] args) { List<Person> persons = new ArrayList<Person>(); persons.add(new Person("Robert","Male", "Single")); persons.add(new Person("John", "Male", "Married")); persons.add(new Person("Laura", "Female", "Married")); persons.add(new Person("Diana", "Female", "Single")); persons.add(new Person("Mike", "Male", "Single")); persons.add(new Person("Bobby", "Male", "Single")); Criteria male = new CriteriaMale(); Criteria female = new CriteriaFemale(); Criteria single = new CriteriaSingle(); Criteria singleMale = new AndCriteria(single, male); Criteria singleOrFemale = new OrCriteria(single, female); System.out.println("Males: "); printPersons(male.meetCriteria(persons)); System.out.println("\nFemales: "); printPersons(female.meetCriteria(persons)); System.out.println("\nSingle Males: "); printPersons(singleMale.meetCriteria(persons)); System.out.println("\nSingle Or Females: "); printPersons(singleOrFemale.meetCriteria(persons)); } public static void printPersons(List<Person> persons){ for (Person person : persons) { System.out.println("Person : [ Name : " + person.getName() + ", Gender : " + person.getGender() + ", Marital Status : " + person.getMaritalStatus() + " ]"); } } }
Output
Verify the output.
Males: Person : [ Name : Robert, Gender : Male, Marital Status : Single ] Person : [ Name : John, Gender : Male, Marital Status : Married ] Person : [ Name : Mike, Gender : Male, Marital Status : Single ] Person : [ Name : Bobby, Gender : Male, Marital Status : Single ] Females: Person : [ Name : Laura, Gender : Female, Marital Status : Married ] Person : [ Name : Diana, Gender : Female, Marital Status : Single ] Single Males: Person : [ Name : Robert, Gender : Male, Marital Status : Single ] Person : [ Name : Mike, Gender : Male, Marital Status : Single ] Person : [ Name : Bobby, Gender : Male, Marital Status : Single ] Single Or Females: Person : [ Name : Robert, Gender : Male, Marital Status : Single ] Person : [ Name : Diana, Gender : Female, Marital Status : Single ] Person : [ Name : Mike, Gender : Male, Marital Status : Single ] Person : [ Name : Bobby, Gender : Male, Marital Status : Single ] Person : [ Name : Laura, Gender : Female, Marital Status : Married ]
Design Patterns - Composite Pattern
Overview
Composite pattern is used where we need to treat a group of objects in similar way as a single object. Composite pattern composes objects in term of a tree structure to represent part as well as whole hierarchy. This type of design pattern comes under structural pattern as this pattern creates a tree structure of group of objects.
This pattern creates a class that contains group of its own objects. This class provides ways to modify its group of same objects.
We are demonstrating use of composite pattern via following example in which we will show employees hierarchy of an organization.
Implementation
We have a class Employee which acts as composite pattern actor class. CompositePatternDemo, our demo class will use Employee class to add department level hierarchy and print all employees.

Step 1
Create Employee class having list of Employee objects.
Employee.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class Employee { private String name; private String dept; private int salary; private List<Employee> subordinates; // constructor public Employee(String name,String dept, int sal) { this.name = name; this.dept = dept; this.salary = sal; subordinates = new ArrayList<Employee>(); } public void add(Employee e) { subordinates.add(e); } public void remove(Employee e) { subordinates.remove(e); } public List<Employee> getSubordinates(){ return subordinates; } public String toString(){ return ("Employee :[ Name : " + name + ", dept : " + dept + ", salary :" + salary+" ]"); } }
Example - Usage of Composite Pattern
Use the Employee class to create and print employee hierarchy.
CompositePatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CompositePatternDemo { public static void main(String[] args) { Employee CEO = new Employee("John","CEO", 30000); Employee headSales = new Employee("Robert","Head Sales", 20000); Employee headMarketing = new Employee("Michel","Head Marketing", 20000); Employee clerk1 = new Employee("Laura","Marketing", 10000); Employee clerk2 = new Employee("Bob","Marketing", 10000); Employee salesExecutive1 = new Employee("Richard","Sales", 10000); Employee salesExecutive2 = new Employee("Rob","Sales", 10000); CEO.add(headSales); CEO.add(headMarketing); headSales.add(salesExecutive1); headSales.add(salesExecutive2); headMarketing.add(clerk1); headMarketing.add(clerk2); //print all employees of the organization System.out.println(CEO); for (Employee headEmployee : CEO.getSubordinates()) { System.out.println(headEmployee); for (Employee employee : headEmployee.getSubordinates()) { System.out.println(employee); } } } } class Employee { private String name; private String dept; private int salary; private List<Employee> subordinates; // constructor public Employee(String name,String dept, int sal) { this.name = name; this.dept = dept; this.salary = sal; subordinates = new ArrayList<Employee>(); } public void add(Employee e) { subordinates.add(e); } public void remove(Employee e) { subordinates.remove(e); } public List<Employee> getSubordinates(){ return subordinates; } public String toString(){ return ("Employee :[ Name : " + name + ", dept : " + dept + ", salary :" + salary+" ]"); } }
Output
Verify the output.
Employee :[ Name : John, dept : CEO, salary :30000 ] Employee :[ Name : Robert, dept : Head Sales, salary :20000 ] Employee :[ Name : Richard, dept : Sales, salary :10000 ] Employee :[ Name : Rob, dept : Sales, salary :10000 ] Employee :[ Name : Michel, dept : Head Marketing, salary :20000 ] Employee :[ Name : Laura, dept : Marketing, salary :10000 ] Employee :[ Name : Bob, dept : Marketing, salary :10000 ]
Design Patterns - Decorator Pattern
Overview
Decorator pattern allows a user to add new functionality to an existing object without altering its structure. This type of design pattern comes under structural pattern as this pattern acts as a wrapper to existing class.
This pattern creates a decorator class which wraps the original class and provides additional functionality keeping class methods signature intact.
We are demonstrating the use of decorator pattern via following example in which we will decorate a shape with some color without alter shape class.
Implementation
We're going to create a Shape interface and concrete classes implementing the Shape interface. We will then create an abstract decorator class ShapeDecorator implementing the Shape interface and having Shape object as its instance variable.
RedShapeDecorator is concrete class implementing ShapeDecorator.
DecoratorPatternDemo, our demo class will use RedShapeDecorator to decorate Shape objects.

Step 1
Create an interface.
Shape.java
package com.tutorialspoint; public interface Shape { void draw(); }
Step 2
Create concrete classes implementing the same interface.
Rectangle.java
package com.tutorialspoint; public class Rectangle implements Shape { @Override public void draw() { System.out.println("Shape: Rectangle"); } }
Circle.java
package com.tutorialspoint; public class Circle implements Shape { @Override public void draw() { System.out.println("Shape: Circle"); } }
Step 3
Create abstract decorator class implementing the Shape interface.
ShapeDecorator.java
package com.tutorialspoint; public abstract class ShapeDecorator implements Shape { protected Shape decoratedShape; public ShapeDecorator(Shape decoratedShape){ this.decoratedShape = decoratedShape; } public void draw(){ decoratedShape.draw(); } }
Step 4
Create concrete decorator class extending the ShapeDecorator class.
RedShapeDecorator.java
package com.tutorialspoint; public class RedShapeDecorator extends ShapeDecorator { public RedShapeDecorator(Shape decoratedShape) { super(decoratedShape); } @Override public void draw() { decoratedShape.draw(); setRedBorder(decoratedShape); } private void setRedBorder(Shape decoratedShape){ System.out.println("Border Color: Red"); } }
Example - Usage of Decorator Pattern
Use the RedShapeDecorator to decorate Shape objects.
DecoratorPatternDemo.java
package com.tutorialspoint; public class DecoratorPatternDemo { public static void main(String[] args) { Shape circle = new Circle(); Shape redCircle = new RedShapeDecorator(new Circle()); Shape redRectangle = new RedShapeDecorator(new Rectangle()); System.out.println("Circle with normal border"); circle.draw(); System.out.println("\nCircle of red border"); redCircle.draw(); System.out.println("\nRectangle of red border"); redRectangle.draw(); } } interface Shape { void draw(); } class Rectangle implements Shape { @Override public void draw() { System.out.println("Shape: Rectangle"); } } class Circle implements Shape { @Override public void draw() { System.out.println("Shape: Circle"); } } abstract class ShapeDecorator implements Shape { protected Shape decoratedShape; public ShapeDecorator(Shape decoratedShape){ this.decoratedShape = decoratedShape; } public void draw(){ decoratedShape.draw(); } } class RedShapeDecorator extends ShapeDecorator { public RedShapeDecorator(Shape decoratedShape) { super(decoratedShape); } @Override public void draw() { decoratedShape.draw(); setRedBorder(decoratedShape); } private void setRedBorder(Shape decoratedShape){ System.out.println("Border Color: Red"); } }
Output
Verify the output.
Circle with normal border Shape: Circle Circle of red border Shape: Circle Border Color: Red Rectangle of red border Shape: Rectangle Border Color: Red
Design Patterns - Facade Pattern
Overview
Facade pattern hides the complexities of the system and provides an interface to the client using which the client can access the system. This type of design pattern comes under structural pattern as this pattern adds an interface to existing system to hide its complexities.
This pattern involves a single class which provides simplified methods required by client and delegates calls to methods of existing system classes.
Implementation
We are going to create a Shape interface and concrete classes implementing the Shape interface. A facade class ShapeMaker is defined as a next step.
ShapeMaker class uses the concrete classes to delegate user calls to these classes. FacadePatternDemo, our demo class, will use ShapeMaker class to show the results.

Step 1
Create an interface.
Shape.java
package com.tutorialspoint; public interface Shape { void draw(); }
Step 2
Create concrete classes implementing the same interface.
Rectangle.java
package com.tutorialspoint; public class Rectangle implements Shape { @Override public void draw() { System.out.println("Rectangle::draw()"); } }
Square.java
package com.tutorialspoint; public class Square implements Shape { @Override public void draw() { System.out.println("Square::draw()"); } }
Circle.java
package com.tutorialspoint; public class Circle implements Shape { @Override public void draw() { System.out.println("Circle::draw()"); } }
Step 3
Create a facade class.
ShapeMaker.java
package com.tutorialspoint; public class ShapeMaker { private Shape circle; private Shape rectangle; private Shape square; public ShapeMaker() { circle = new Circle(); rectangle = new Rectangle(); square = new Square(); } public void drawCircle(){ circle.draw(); } public void drawRectangle(){ rectangle.draw(); } public void drawSquare(){ square.draw(); } }
Example - Usage of Facade Pattern Demo
Use the facade to draw various types of shapes.
FacadePatternDemo.java
package com.tutorialspoint; public class FacadePatternDemo { public static void main(String[] args) { ShapeMaker shapeMaker = new ShapeMaker(); shapeMaker.drawCircle(); shapeMaker.drawRectangle(); shapeMaker.drawSquare(); } } interface Shape { void draw(); } class Rectangle implements Shape { @Override public void draw() { System.out.println("Rectangle::draw()"); } } class Square implements Shape { @Override public void draw() { System.out.println("Square::draw()"); } } class Circle implements Shape { @Override public void draw() { System.out.println("Circle::draw()"); } } class ShapeMaker { private Shape circle; private Shape rectangle; private Shape square; public ShapeMaker() { circle = new Circle(); rectangle = new Rectangle(); square = new Square(); } public void drawCircle(){ circle.draw(); } public void drawRectangle(){ rectangle.draw(); } public void drawSquare(){ square.draw(); } }
Output
Verify the output.
Circle::draw() Rectangle::draw() Square::draw()
Design Patterns - Flyweight Pattern
Overview
Flyweight pattern is primarily used to reduce the number of objects created and to decrease memory footprint and increase performance. This type of design pattern comes under structural pattern as this pattern provides ways to decrease object count thus improving the object structure of application.
Flyweight pattern tries to reuse already existing similar kind objects by storing them and creates new object when no matching object is found. We will demonstrate this pattern by drawing 20 circles of different locations but we will create only 5 objects. Only 5 colors are available so color property is used to check already existing Circle objects.
Implementation
We are going to create a Shape interface and concrete class Circle implementing the Shape interface. A factory class ShapeFactory is defined as a next step.
ShapeFactory has a HashMap of Circle having key as color of the Circle object. Whenever a request comes to create a circle of particular color to ShapeFactory, it checks the circle object in its HashMap, if object of Circle found, that object is returned otherwise a new object is created, stored in hashmap for future use, and returned to client.
FlyWeightPatternDemo, our demo class, will use ShapeFactory to get a Shape object. It will pass information (red / green / blue/ black / white) to ShapeFactory to get the circle of desired color it needs.

Step 1
Create an interface.
Shape.java
package com.tutorialspoint; public interface Shape { void draw(); }
Step 2
Create concrete class implementing the same interface.
Circle.java
package com.tutorialspoint; public class Circle implements Shape { private String color; private int x; private int y; private int radius; public Circle(String color){ this.color = color; } public void setX(int x) { this.x = x; } public void setY(int y) { this.y = y; } public void setRadius(int radius) { this.radius = radius; } @Override public void draw() { System.out.println("Circle: Draw() [Color : " + color + ", x : " + x + ", y :" + y + ", radius :" + radius); } }
Step 3
Create a factory to generate object of concrete class based on given information.
ShapeFactory.java
package com.tutorialspoint; import java.util.HashMap; public class ShapeFactory { private static final HashMap circleMap = new HashMap(); public static Shape getCircle(String color) { Circle circle = (Circle)circleMap.get(color); if(circle == null) { circle = new Circle(color); circleMap.put(color, circle); System.out.println("Creating circle of color : " + color); } return circle; } }
Example - Usage of Flyweight Pattern
Use the factory to get object of concrete class by passing an information such as color.
FlyweightPatternDemo.java
package com.tutorialspoint; import java.util.HashMap; public class FlyweightPatternDemo { private static final String colors[] = { "Red", "Green", "Blue", "White", "Black" }; public static void main(String[] args) { for(int i=0; i < 20; ++i) { Circle circle = (Circle)ShapeFactory.getCircle(getRandomColor()); circle.setX(getRandomX()); circle.setY(getRandomY()); circle.setRadius(100); circle.draw(); } } private static String getRandomColor() { return colors[(int)(Math.random()*colors.length)]; } private static int getRandomX() { return (int)(Math.random()*100 ); } private static int getRandomY() { return (int)(Math.random()*100); } } interface Shape { void draw(); } class Circle implements Shape { private String color; private int x; private int y; private int radius; public Circle(String color){ this.color = color; } public void setX(int x) { this.x = x; } public void setY(int y) { this.y = y; } public void setRadius(int radius) { this.radius = radius; } @Override public void draw() { System.out.println("Circle: Draw() [Color : " + color + ", x : " + x + ", y :" + y + ", radius :" + radius); } } class ShapeFactory { private static final HashMap circleMap = new HashMap(); public static Shape getCircle(String color) { Circle circle = (Circle)circleMap.get(color); if(circle == null) { circle = new Circle(color); circleMap.put(color, circle); System.out.println("Creating circle of color : " + color); } return circle; } }
Output
Verify the output.
Creating circle of color : Black Circle: Draw() [Color : Black, x : 36, y :71, radius :100 Creating circle of color : Green Circle: Draw() [Color : Green, x : 27, y :27, radius :100 Creating circle of color : White Circle: Draw() [Color : White, x : 64, y :10, radius :100 Creating circle of color : Red Circle: Draw() [Color : Red, x : 15, y :44, radius :100 Circle: Draw() [Color : Green, x : 19, y :10, radius :100 Circle: Draw() [Color : Green, x : 94, y :32, radius :100 Circle: Draw() [Color : White, x : 69, y :98, radius :100 Creating circle of color : Blue Circle: Draw() [Color : Blue, x : 13, y :4, radius :100 Circle: Draw() [Color : Green, x : 21, y :21, radius :100 Circle: Draw() [Color : Blue, x : 55, y :86, radius :100 Circle: Draw() [Color : White, x : 90, y :70, radius :100 Circle: Draw() [Color : Green, x : 78, y :3, radius :100 Circle: Draw() [Color : Green, x : 64, y :89, radius :100 Circle: Draw() [Color : Blue, x : 3, y :91, radius :100 Circle: Draw() [Color : Blue, x : 62, y :82, radius :100 Circle: Draw() [Color : Green, x : 97, y :61, radius :100 Circle: Draw() [Color : Green, x : 86, y :12, radius :100 Circle: Draw() [Color : Green, x : 38, y :93, radius :100 Circle: Draw() [Color : Red, x : 76, y :82, radius :100 Circle: Draw() [Color : Blue, x : 95, y :82, radius :100
Design Patterns - Proxy Pattern
Overview
In proxy pattern, a class represents functionality of another class. This type of design pattern comes under structural pattern.
In proxy pattern, we create object having original object to interface its functionality to outer world.
Implementation
We are going to create an Image interface and concrete classes implementing the Image interface. ProxyImage is a a proxy class to reduce memory footprint of RealImage object loading.
ProxyPatternDemo, our demo class, will use ProxyImage to get an Image object to load and display as it needs.

Step 1
Create an interface.
Image.java
package com.tutorialspoint; public interface Image { void display(); }
Step 2
Create concrete classes implementing the same interface.
RealImage.java
package com.tutorialspoint; public class RealImage implements Image { private String fileName; public RealImage(String fileName){ this.fileName = fileName; loadFromDisk(fileName); } @Override public void display() { System.out.println("Displaying " + fileName); } private void loadFromDisk(String fileName){ System.out.println("Loading " + fileName); } }
ProxyImage.java
package com.tutorialspoint; public class ProxyImage implements Image{ private RealImage realImage; private String fileName; public ProxyImage(String fileName){ this.fileName = fileName; } @Override public void display() { if(realImage == null){ realImage = new RealImage(fileName); } realImage.display(); } }
Example - Usage of Proxy Pattern
Use the ProxyImage to get object of RealImage class when required.
ProxyPatternDemo.java
package com.tutorialspoint; public class ProxyPatternDemo { public static void main(String[] args) { Image image = new ProxyImage("test_10mb.jpg"); //image will be loaded from disk image.display(); System.out.println(""); //image will not be loaded from disk image.display(); } } interface Image { void display(); } class RealImage implements Image { private String fileName; public RealImage(String fileName){ this.fileName = fileName; loadFromDisk(fileName); } @Override public void display() { System.out.println("Displaying " + fileName); } private void loadFromDisk(String fileName){ System.out.println("Loading " + fileName); } } class ProxyImage implements Image{ private RealImage realImage; private String fileName; public ProxyImage(String fileName){ this.fileName = fileName; } @Override public void display() { if(realImage == null){ realImage = new RealImage(fileName); } realImage.display(); } }
Step 4
Verify the output.
Loading test_10mb.jpg Displaying test_10mb.jpg Displaying test_10mb.jpg
Chain of Responsibility Pattern
Overview
As the name suggests, the chain of responsibility pattern creates a chain of receiver objects for a request. This pattern decouples sender and receiver of a request based on type of request. This pattern comes under behavioral patterns.
In this pattern, normally each receiver contains reference to another receiver. If one object cannot handle the request then it passes the same to the next receiver and so on.
Implementation
We have created an abstract class AbstractLogger with a level of logging. Then we have created three types of loggers extending the AbstractLogger. Each logger checks the level of message to its level and print accordingly otherwise does not print and pass the message to its next logger.

Step 1
Create an abstract logger class.
AbstractLogger.java
package com.tutorialspoint; public abstract class AbstractLogger { public static int INFO = 1; public static int DEBUG = 2; public static int ERROR = 3; protected int level; //next element in chain or responsibility protected AbstractLogger nextLogger; public void setNextLogger(AbstractLogger nextLogger){ this.nextLogger = nextLogger; } public void logMessage(int level, String message){ if(this.level <= level){ write(message); } if(nextLogger !=null){ nextLogger.logMessage(level, message); } } abstract protected void write(String message); }
Step 2
Create concrete classes extending the logger.
ConsoleLogger.java
package com.tutorialspoint; public class ConsoleLogger extends AbstractLogger { public ConsoleLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("Standard Console::Logger: " + message); } }
ErrorLogger.java
package com.tutorialspoint; public class ErrorLogger extends AbstractLogger { public ErrorLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("Error Console::Logger: " + message); } }
FileLogger.java
package com.tutorialspoint; public class FileLogger extends AbstractLogger { public FileLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("File::Logger: " + message); } }
Example - Usage of Chain of Responsibility Pattern
Create different types of loggers. Assign them error levels and set next logger in each logger. Next logger in each logger represents the part of the chain.
ChainPatternDemo.java
package com.tutorialspoint; public class ChainPatternDemo { private static AbstractLogger getChainOfLoggers(){ AbstractLogger errorLogger = new ErrorLogger(AbstractLogger.ERROR); AbstractLogger fileLogger = new FileLogger(AbstractLogger.DEBUG); AbstractLogger consoleLogger = new ConsoleLogger(AbstractLogger.INFO); errorLogger.setNextLogger(fileLogger); fileLogger.setNextLogger(consoleLogger); return errorLogger; } public static void main(String[] args) { AbstractLogger loggerChain = getChainOfLoggers(); loggerChain.logMessage(AbstractLogger.INFO, "This is an information."); loggerChain.logMessage(AbstractLogger.DEBUG, "This is an debug level information."); loggerChain.logMessage(AbstractLogger.ERROR, "This is an error information."); } } abstract class AbstractLogger { public static int INFO = 1; public static int DEBUG = 2; public static int ERROR = 3; protected int level; //next element in chain or responsibility protected AbstractLogger nextLogger; public void setNextLogger(AbstractLogger nextLogger){ this.nextLogger = nextLogger; } public void logMessage(int level, String message){ if(this.level <= level){ write(message); } if(nextLogger !=null){ nextLogger.logMessage(level, message); } } abstract protected void write(String message); } class ConsoleLogger extends AbstractLogger { public ConsoleLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("Standard Console::Logger: " + message); } } class ErrorLogger extends AbstractLogger { public ErrorLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("Error Console::Logger: " + message); } } class FileLogger extends AbstractLogger { public FileLogger(int level){ this.level = level; } @Override protected void write(String message) { System.out.println("File::Logger: " + message); } }
Step 4
Verify the output.
Standard Console::Logger: This is an information. File::Logger: This is an debug level information. Standard Console::Logger: This is an debug level information. Error Console::Logger: This is an error information. File::Logger: This is an error information. Standard Console::Logger: This is an error information.
Design Patterns - Command Pattern
Overview
Command pattern is a data driven design pattern and falls under behavioral pattern category. A request is wrapped under an object as command and passed to invoker object. Invoker object looks for the appropriate object which can handle this command and passes the command to the corresponding object which executes the command.
Implementation
We have created an interface Order which is acting as a command. We have created a Stock class which acts as a request. We have concrete command classes BuyStock and SellStock implementing Order interface which will do actual command processing. A class Broker is created which acts as an invoker object. It can take and place orders.
Broker object uses command pattern to identify which object will execute which command based on the type of command. CommandPatternDemo, our demo class, will use Broker class to demonstrate command pattern.

Step 1
Create a command interface.
Order.java
package com.tutorialspoint; public interface Order { void execute(); }
Step 2
Create a request class.
Stock.java
package com.tutorialspoint; public class Stock { private String name = "ABC"; private int quantity = 10; public void buy(){ System.out.println("Stock [ Name: "+name+", Quantity: " + quantity +" ] bought"); } public void sell(){ System.out.println("Stock [ Name: "+name+", Quantity: " + quantity +" ] sold"); } }
Step 3
Create concrete classes implementing the Order interface.
BuyStock.java
package com.tutorialspoint; public class BuyStock implements Order { private Stock abcStock; public BuyStock(Stock abcStock){ this.abcStock = abcStock; } public void execute() { abcStock.buy(); } }
SellStock.java
package com.tutorialspoint; public class SellStock implements Order { private Stock abcStock; public SellStock(Stock abcStock){ this.abcStock = abcStock; } public void execute() { abcStock.sell(); } }
Step 4
Create command invoker class.
Broker.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class Broker { private List<Order> orderList = new ArrayList<Order>(); public void takeOrder(Order order){ orderList.add(order); } public void placeOrders(){ for (Order order : orderList) { order.execute(); } orderList.clear(); } }
Example - Usage of Command Pattern
Use the Broker class to take and execute commands.
CommandPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CommandPatternDemo { public static void main(String[] args) { Stock abcStock = new Stock(); BuyStock buyStockOrder = new BuyStock(abcStock); SellStock sellStockOrder = new SellStock(abcStock); Broker broker = new Broker(); broker.takeOrder(buyStockOrder); broker.takeOrder(sellStockOrder); broker.placeOrders(); } } interface Order { void execute(); } class Stock { private String name = "ABC"; private int quantity = 10; public void buy(){ System.out.println("Stock [ Name: "+name+", Quantity: " + quantity +" ] bought"); } public void sell(){ System.out.println("Stock [ Name: "+name+", Quantity: " + quantity +" ] sold"); } } class BuyStock implements Order { private Stock abcStock; public BuyStock(Stock abcStock){ this.abcStock = abcStock; } public void execute() { abcStock.buy(); } } class SellStock implements Order { private Stock abcStock; public SellStock(Stock abcStock){ this.abcStock = abcStock; } public void execute() { abcStock.sell(); } } class Broker { private List<Order> orderList = new ArrayList<Order>(); public void takeOrder(Order order){ orderList.add(order); } public void placeOrders(){ for (Order order : orderList) { order.execute(); } orderList.clear(); } }
Output
Verify the output.
Stock [ Name: ABC, Quantity: 10 ] bought Stock [ Name: ABC, Quantity: 10 ] sold
Design Patterns - Interpreter Pattern
Interpreter pattern provides a way to evaluate language grammar or expression. This type of pattern comes under behavioral pattern. This pattern involves implementing an expression interface which tells to interpret a particular context. This pattern is used in SQL parsing, symbol processing engine etc.
Implementation
We are going to create an interface Expression and concrete classes implementing the Expression interface. A class TerminalExpression is defined which acts as a main interpreter of context in question. Other classes OrExpression, AndExpression are used to create combinational expressions.
InterpreterPatternDemo, our demo class, will use Expression class to create rules and demonstrate parsing of expressions.

Step 1
Create an expression interface.
Expression.java
package com.tutorialspoint; public interface Expression { public boolean interpret(String context); }
Step 2
Create concrete classes implementing the above interface.
TerminalExpression.java
package com.tutorialspoint; public class TerminalExpression implements Expression { private String data; public TerminalExpression(String data){ this.data = data; } @Override public boolean interpret(String context) { if(context.contains(data)){ return true; } return false; } }
OrExpression.java
package com.tutorialspoint; public class OrExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public OrExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) || expr2.interpret(context); } }
AndExpression.java
package com.tutorialspoint; public class AndExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public AndExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) && expr2.interpret(context); } }
Example - Usage of Interpreter Pattern
InterpreterPatternDemo uses Expression class to create rules and then parse them.
InterpreterPatternDemo.java
package com.tutorialspoint; public class InterpreterPatternDemo { //Rule: Robert and John are male public static Expression getMaleExpression(){ Expression robert = new TerminalExpression("Robert"); Expression john = new TerminalExpression("John"); return new OrExpression(robert, john); } //Rule: Julie is a married women public static Expression getMarriedWomanExpression(){ Expression julie = new TerminalExpression("Julie"); Expression married = new TerminalExpression("Married"); return new AndExpression(julie, married); } public static void main(String[] args) { Expression isMale = getMaleExpression(); Expression isMarriedWoman = getMarriedWomanExpression(); System.out.println("John is male? " + isMale.interpret("John")); System.out.println("Julie is a married women? " + isMarriedWoman.interpret("Married Julie")); } } interface Expression { public boolean interpret(String context); } class TerminalExpression implements Expression { private String data; public TerminalExpression(String data){ this.data = data; } @Override public boolean interpret(String context) { if(context.contains(data)){ return true; } return false; } } class OrExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public OrExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) || expr2.interpret(context); } } class AndExpression implements Expression { private Expression expr1 = null; private Expression expr2 = null; public AndExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } @Override public boolean interpret(String context) { return expr1.interpret(context) && expr2.interpret(context); } }
Output
Verify the output.
John is male? true Julie is a married women? true
Design Patterns - Iterator Pattern
Iterator pattern is very commonly used design pattern in Java and .Net programming environment. This pattern is used to get a way to access the elements of a collection object in sequential manner without any need to know its underlying representation.
Iterator pattern falls under behavioral pattern category.
Implementation
We're going to create a Iterator interface which narrates navigation method and a Container interface which retruns the iterator . Concrete classes implementing the Container interface will be responsible to implement Iterator interface and use it
IteratorPatternDemo, our demo class will use NamesRepository, a concrete class implementation to print a Names stored as a collection in NamesRepository.

Step 1
Create interfaces.
Iterator.java
package com.tutorialspoint; public interface Iterator { public boolean hasNext(); public Object next(); }
Container.java
package com.tutorialspoint; public interface Container { public Iterator getIterator(); }
Step 2
Create concrete class implementing the Container interface. This class has inner class NameIterator implementing the Iterator interface.
NameRepository.java
package com.tutorialspoint; public class NameRepository implements Container { public String names[] = {"Robert" , "John" ,"Julie" , "Lora"}; @Override public Iterator getIterator() { return new NameIterator(); } private class NameIterator implements Iterator { int index; @Override public boolean hasNext() { if(index < names.length){ return true; } return false; } @Override public Object next() { if(this.hasNext()){ return names[index++]; } return null; } } }
Example - Usage of Iterator Pattern
Use the NameRepository to get iterator and print names.
IteratorPatternDemo.java
package com.tutorialspoint; public class IteratorPatternDemo { public static void main(String[] args) { NameRepository namesRepository = new NameRepository(); for(Iterator iter = namesRepository.getIterator(); iter.hasNext();){ String name = (String)iter.next(); System.out.println("Name : " + name); } } } interface Iterator { public boolean hasNext(); public Object next(); } interface Container { public Iterator getIterator(); } class NameRepository implements Container { public String names[] = {"Robert" , "John" ,"Julie" , "Lora"}; @Override public Iterator getIterator() { return new NameIterator(); } private class NameIterator implements Iterator { int index; @Override public boolean hasNext() { if(index < names.length){ return true; } return false; } @Override public Object next() { if(this.hasNext()){ return names[index++]; } return null; } } }
Output
Verify the output.
Name : Robert Name : John Name : Julie Name : Lora
Design Patterns - Mediator Pattern
Mediator pattern is used to reduce communication complexity between multiple objects or classes. This pattern provides a mediator class which normally handles all the communications between different classes and supports easy maintenance of the code by loose coupling. Mediator pattern falls under behavioral pattern category.
Implementation
We are demonstrating mediator pattern by example of a chat room where multiple users can send message to chat room and it is the responsibility of chat room to show the messages to all users. We have created two classes ChatRoom and User. User objects will use ChatRoom method to share their messages.
MediatorPatternDemo, our demo class, will use User objects to show communication between them.

Step 1
Create mediator class.
ChatRoom.java
package com.tutorialspoint; import java.util.Date; public class ChatRoom { public static void showMessage(User user, String message){ System.out.println(new Date().toString() + " [" + user.getName() + "] : " + message); } }
Step 2
Create user class
User.java
package com.tutorialspoint; public class User { private String name; public String getName() { return name; } public void setName(String name) { this.name = name; } public User(String name){ this.name = name; } public void sendMessage(String message){ ChatRoom.showMessage(this,message); } }
Example - Usage of Mediator Pattern
Use the User object to show communications between them.
MediatorPatternDemo.java
package com.tutorialspoint; import java.util.Date; public class MediatorPatternDemo { public static void main(String[] args) { User robert = new User("Robert"); User john = new User("John"); robert.sendMessage("Hi! John!"); john.sendMessage("Hello! Robert!"); } } class ChatRoom { public static void showMessage(User user, String message){ System.out.println(new Date().toString() + " [" + user.getName() + "] : " + message); } } class User { private String name; public String getName() { return name; } public void setName(String name) { this.name = name; } public User(String name){ this.name = name; } public void sendMessage(String message){ ChatRoom.showMessage(this,message); } }
Output
Verify the output.
Wed Aug 13 11:54:39 IST 2025 [Robert] : Hi! John! Wed Aug 13 11:54:39 IST 2025 [John] : Hello! Robert!
Design Patterns - Memento Pattern
Memento pattern is used to restore state of an object to a previous state. Memento pattern falls under behavioral pattern category.
Implementation
Memento pattern uses three actor classes. Memento contains state of an object to be restored. Originator creates and stores states in Memento objects and Caretaker object is responsible to restore object state from Memento. We have created classes Memento, Originator and CareTaker.
MementoPatternDemo, our demo class, will use CareTaker and Originator objects to show restoration of object states.

Step 1
Create Memento class.
Memento.java
package com.tutorialspoint; public class Memento { private String state; public Memento(String state){ this.state = state; } public String getState(){ return state; } }
Step 2
Create Originator class
Originator.java
package com.tutorialspoint; public class Originator { private String state; public void setState(String state){ this.state = state; } public String getState(){ return state; } public Memento saveStateToMemento(){ return new Memento(state); } public void getStateFromMemento(Memento memento){ state = memento.getState(); } }
Step 3
Create CareTaker class
CareTaker.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class CareTaker { private List<Memento> mementoList = new ArrayList<Memento>(); public void add(Memento state){ mementoList.add(state); } public Memento get(int index){ return mementoList.get(index); } }
Example - Usage of Memento Pattern
Use CareTaker and Originator objects.
MementoPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class MementoPatternDemo { public static void main(String[] args) { Originator originator = new Originator(); CareTaker careTaker = new CareTaker(); originator.setState("State #1"); originator.setState("State #2"); careTaker.add(originator.saveStateToMemento()); originator.setState("State #3"); careTaker.add(originator.saveStateToMemento()); originator.setState("State #4"); System.out.println("Current State: " + originator.getState()); originator.getStateFromMemento(careTaker.get(0)); System.out.println("First saved State: " + originator.getState()); originator.getStateFromMemento(careTaker.get(1)); System.out.println("Second saved State: " + originator.getState()); } } class Memento { private String state; public Memento(String state){ this.state = state; } public String getState(){ return state; } } class Originator { private String state; public void setState(String state){ this.state = state; } public String getState(){ return state; } public Memento saveStateToMemento(){ return new Memento(state); } public void getStateFromMemento(Memento memento){ state = memento.getState(); } } class CareTaker { private List<Memento> mementoList = new ArrayList<Memento>(); public void add(Memento state){ mementoList.add(state); } public Memento get(int index){ return mementoList.get(index); } }
Output
Verify the output.
Current State: State #4 First saved State: State #2 Second saved State: State #3
Design Patterns - Observer Pattern
Observer pattern is used when there is one-to-many relationship between objects such as if one object is modified, its depenedent objects are to be notified automatically. Observer pattern falls under behavioral pattern category.
Implementation
Observer pattern uses three actor classes. Subject, Observer and Client. Subject is an object having methods to attach and detach observers to a client object. We have created an abstract class Observer and a concrete class Subject that is extending class Observer.
ObserverPatternDemo, our demo class, will use Subject and concrete class object to show observer pattern in action.

Step 1
Create Subject class.
Subject.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class Subject { private List<Observer> observers = new ArrayList<Observer>(); private int state; public int getState() { return state; } public void setState(int state) { this.state = state; notifyAllObservers(); } public void attach(Observer observer){ observers.add(observer); } public void notifyAllObservers(){ for (Observer observer : observers) { observer.update(); } } }
Step 2
Create Observer class.
Observer.java
package com.tutorialspoint; public abstract class Observer { protected Subject subject; public abstract void update(); }
Step 3
Create concrete observer classes
BinaryObserver.java
package com.tutorialspoint; public class BinaryObserver extends Observer{ public BinaryObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Binary String: " + Integer.toBinaryString( subject.getState() ) ); } }
OctalObserver.java
package com.tutorialspoint; public class OctalObserver extends Observer{ public OctalObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Octal String: " + Integer.toOctalString( subject.getState() ) ); } }
HexaObserver.java
package com.tutorialspoint; public class HexaObserver extends Observer{ public HexaObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Hex String: " + Integer.toHexString( subject.getState() ).toUpperCase() ); } }
Example - Usage of Observer Pattern
Use Subject and concrete observer objects.
ObserverPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class ObserverPatternDemo { public static void main(String[] args) { Subject subject = new Subject(); new HexaObserver(subject); new OctalObserver(subject); new BinaryObserver(subject); System.out.println("First state change: 15"); subject.setState(15); System.out.println("Second state change: 10"); subject.setState(10); } } class Subject { private List<Observer> observers = new ArrayList<Observer>(); private int state; public int getState() { return state; } public void setState(int state) { this.state = state; notifyAllObservers(); } public void attach(Observer observer){ observers.add(observer); } public void notifyAllObservers(){ for (Observer observer : observers) { observer.update(); } } } abstract class Observer { protected Subject subject; public abstract void update(); } class BinaryObserver extends Observer{ public BinaryObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Binary String: " + Integer.toBinaryString( subject.getState() ) ); } } class OctalObserver extends Observer{ public OctalObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Octal String: " + Integer.toOctalString( subject.getState() ) ); } } class HexaObserver extends Observer{ public HexaObserver(Subject subject){ this.subject = subject; this.subject.attach(this); } @Override public void update() { System.out.println( "Hex String: " + Integer.toHexString( subject.getState() ).toUpperCase() ); } }
Output
Verify the output.
First state change: 15 Hex String: F Octal String: 17 Binary String: 1111 Second state change: 10 Hex String: A Octal String: 12 Binary String: 1010
Design Patterns - State Pattern
In State pattern a class behavior changes based on its state. This type of design pattern comes under behavior pattern.
In State pattern, we create objects which represent various states and a context object whose behavior varies as its state object changes.
Implementation
We are going to create a State interface defining an action and concrete state classes implementing the State interface. Context is a class which carries a State.
StatePatternDemo, our demo class, will use Context and state objects to demonstrate change in Context behavior based on type of state it is in.

Step 1
Create an interface.
State.java
package com.tutorialspoint; public interface State { public void doAction(Context context); }
Step 2
Create concrete classes implementing the same interface.
StartState.java
package com.tutorialspoint; public class StartState implements State { public void doAction(Context context) { System.out.println("Player is in start state"); context.setState(this); } public String toString(){ return "Start State"; } }
StopState.java
package com.tutorialspoint; public class StopState implements State { public void doAction(Context context) { System.out.println("Player is in stop state"); context.setState(this); } public String toString(){ return "Stop State"; } }
Step 3
Create Context Class.
Context.java
package com.tutorialspoint; public class Context { private State state; public Context(){ state = null; } public void setState(State state){ this.state = state; } public State getState(){ return state; } }
Example - Usage of State Pattern
Use the Context to see change in behaviour when State changes.
StatePatternDemo.java
package com.tutorialspoint; public class StatePatternDemo { public static void main(String[] args) { Context context = new Context(); StartState startState = new StartState(); startState.doAction(context); System.out.println(context.getState().toString()); StopState stopState = new StopState(); stopState.doAction(context); System.out.println(context.getState().toString()); } } interface State { public void doAction(Context context); } class StartState implements State { public void doAction(Context context) { System.out.println("Player is in start state"); context.setState(this); } public String toString(){ return "Start State"; } } class StopState implements State { public void doAction(Context context) { System.out.println("Player is in stop state"); context.setState(this); } public String toString(){ return "Stop State"; } } class Context { private State state; public Context(){ state = null; } public void setState(State state){ this.state = state; } public State getState(){ return state; } }
Output
Verify the output.
Player is in start state Start State Player is in stop state Stop State
Design Patterns - Strategy Pattern
Overview
In Strategy pattern, a class behavior or its algorithm can be changed at run time. This type of design pattern comes under behavior pattern.
In Strategy pattern, we create objects which represent various strategies and a context object whose behavior varies as per its strategy object. The strategy object changes the executing algorithm of the context object.
Implementation
We are going to create a Strategy interface defining an action and concrete strategy classes implementing the Strategy interface. Context is a class which uses a Strategy.
StrategyPatternDemo, our demo class, will use Context and strategy objects to demonstrate change in Context behaviour based on strategy it deploys or uses.

Step 1
Create an interface.
Strategy.java
package com.tutorialspoint; public interface Strategy { public int doOperation(int num1, int num2); }
Step 2
Create concrete classes implementing the same interface.
OperationAdd.java
package com.tutorialspoint; public class OperationAdd implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 + num2; } }
OperationSubstract.java
package com.tutorialspoint; public class OperationSubstract implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 - num2; } }
OperationMultiply.java
package com.tutorialspoint; public class OperationMultiply implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 * num2; } }
Step 3
Create Context Class.
Context.java
package com.tutorialspoint; public class Context { private Strategy strategy; public Context(Strategy strategy){ this.strategy = strategy; } public int executeStrategy(int num1, int num2){ return strategy.doOperation(num1, num2); } }
Example - Usage of Strategy Pattern
Use the Context to see change in behaviour when it changes its Strategy.
StrategyPatternDemo.java
package com.tutorialspoint; public class StrategyPatternDemo { public static void main(String[] args) { Context context = new Context(new OperationAdd()); System.out.println("10 + 5 = " + context.executeStrategy(10, 5)); context = new Context(new OperationSubstract()); System.out.println("10 - 5 = " + context.executeStrategy(10, 5)); context = new Context(new OperationMultiply()); System.out.println("10 * 5 = " + context.executeStrategy(10, 5)); } } interface Strategy { public int doOperation(int num1, int num2); } class OperationAdd implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 + num2; } } class OperationSubstract implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 - num2; } } class OperationMultiply implements Strategy{ @Override public int doOperation(int num1, int num2) { return num1 * num2; } } class Context { private Strategy strategy; public Context(Strategy strategy){ this.strategy = strategy; } public int executeStrategy(int num1, int num2){ return strategy.doOperation(num1, num2); } }
Output
Verify the output.
10 + 5 = 15 10 - 5 = 5 10 * 5 = 50
Design Patterns - Template Pattern
Overview
In Template pattern, an abstract class exposes defined way(s)/template(s) to execute its methods. Its subclasses can override the method implementation as per need but the invocation is to be in the same way as defined by an abstract class. This pattern comes under behavior pattern category.
Implementation
We are going to create a Game abstract class defining operations with a template method set to be final so that it cannot be overridden. Cricket and Football are concrete classes that extend Game and override its methods.
TemplatePatternDemo, our demo class, will use Game to demonstrate use of template pattern.

Step 1
Create an abstract class with a template method being final.
Game.java
package com.tutorialspoint; public abstract class Game { abstract void initialize(); abstract void startPlay(); abstract void endPlay(); //template method public final void play(){ //initialize the game initialize(); //start game startPlay(); //end game endPlay(); } }
Step 2
Create concrete classes extending the above class.
Cricket.java
package com.tutorialspoint; public class Cricket extends Game { @Override void endPlay() { System.out.println("Cricket Game Finished!"); } @Override void initialize() { System.out.println("Cricket Game Initialized! Start playing."); } @Override void startPlay() { System.out.println("Cricket Game Started. Enjoy the game!"); } }
Football.java
package com.tutorialspoint; public class Football extends Game { @Override void endPlay() { System.out.println("Football Game Finished!"); } @Override void initialize() { System.out.println("Football Game Initialized! Start playing."); } @Override void startPlay() { System.out.println("Football Game Started. Enjoy the game!"); } }
Example - Usage of Template Pattern
Use the Game's template method play() to demonstrate a defined way of playing game.
TemplatePatternDemo.java
package com.tutorialspoint; public class TemplatePatternDemo { public static void main(String[] args) { Game game = new Cricket(); game.play(); System.out.println(); game = new Football(); game.play(); } } abstract class Game { abstract void initialize(); abstract void startPlay(); abstract void endPlay(); //template method public final void play(){ //initialize the game initialize(); //start game startPlay(); //end game endPlay(); } } class Cricket extends Game { @Override void endPlay() { System.out.println("Cricket Game Finished!"); } @Override void initialize() { System.out.println("Cricket Game Initialized! Start playing."); } @Override void startPlay() { System.out.println("Cricket Game Started. Enjoy the game!"); } } class Football extends Game { @Override void endPlay() { System.out.println("Football Game Finished!"); } @Override void initialize() { System.out.println("Football Game Initialized! Start playing."); } @Override void startPlay() { System.out.println("Football Game Started. Enjoy the game!"); } }
Output
Verify the output.
Cricket Game Initialized! Start playing. Cricket Game Started. Enjoy the game! Cricket Game Finished! Football Game Initialized! Start playing. Football Game Started. Enjoy the game! Football Game Finished!
Design Patterns - Visitor Pattern
Overview
In Visitor pattern, we use a visitor class which changes the executing algorithm of an element class. By this way, execution algorithm of element can vary as and when visitor varies. This pattern comes under behavior pattern category. As per the pattern, element object has to accept the visitor object so that visitor object handles the operation on the element object.
Implementation
We are going to create a ComputerPart interface defining accept opearation.Keyboard, Mouse, Monitor and Computer are concrete classes implementing ComputerPart interface. We will define another interface ComputerPartVisitor which will define a visitor class operations. Computer uses concrete visitor to do corresponding action.
VisitorPatternDemo, our demo class, will use Computer and ComputerPartVisitor classes to demonstrate use of visitor pattern.

Step 1
Define an interface to represent element.
ComputerPart.java
/ package com.tutorialspoint; public interface ComputerPart { public void accept(ComputerPartVisitor computerPartVisitor); }
Step 2
Create concrete classes extending the above class.
Keyboard.java
package com.tutorialspoint; public class Keyboard implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } }
Monitor.java
package com.tutorialspoint; public class Monitor implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } }
Mouse.java
package com.tutorialspoint; public class Mouse implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } }
Computer.java
package com.tutorialspoint; public class Computer implements ComputerPart { ComputerPart[] parts; public Computer(){ parts = new ComputerPart[] {new Mouse(), new Keyboard(), new Monitor()}; } @Override public void accept(ComputerPartVisitor computerPartVisitor) { for (int i = 0; i < parts.length; i++) { parts[i].accept(computerPartVisitor); } computerPartVisitor.visit(this); } }
Step 3
Define an interface to represent visitor.
ComputerPartVisitor.java
package com.tutorialspoint; public interface ComputerPartVisitor { public void visit(Computer computer); public void visit(Mouse mouse); public void visit(Keyboard keyboard); public void visit(Monitor monitor); }
Step 4
Create concrete visitor implementing the above class.
ComputerPartDisplayVisitor.java
package com.tutorialspoint; public class ComputerPartDisplayVisitor implements ComputerPartVisitor { @Override public void visit(Computer computer) { System.out.println("Displaying Computer."); } @Override public void visit(Mouse mouse) { System.out.println("Displaying Mouse."); } @Override public void visit(Keyboard keyboard) { System.out.println("Displaying Keyboard."); } @Override public void visit(Monitor monitor) { System.out.println("Displaying Monitor."); } }
Example - Usage of Visitor Pattern
Use the ComputerPartDisplayVisitor to display parts of Computer.
VisitorPatternDemo.java
package com.tutorialspoint; public class VisitorPatternDemo { public static void main(String[] args) { ComputerPart computer = new Computer(); computer.accept(new ComputerPartDisplayVisitor()); } } interface ComputerPart { public void accept(ComputerPartVisitor computerPartVisitor); } class Keyboard implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } } class Mouse implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } } class Monitor implements ComputerPart { @Override public void accept(ComputerPartVisitor computerPartVisitor) { computerPartVisitor.visit(this); } } class Computer implements ComputerPart { ComputerPart[] parts; public Computer(){ parts = new ComputerPart[] {new Mouse(), new Keyboard(), new Monitor()}; } @Override public void accept(ComputerPartVisitor computerPartVisitor) { for (int i = 0; i < parts.length; i++) { parts[i].accept(computerPartVisitor); } computerPartVisitor.visit(this); } } interface ComputerPartVisitor { public void visit(Computer computer); public void visit(Mouse mouse); public void visit(Keyboard keyboard); public void visit(Monitor monitor); } class ComputerPartDisplayVisitor implements ComputerPartVisitor { @Override public void visit(Computer computer) { System.out.println("Displaying Computer."); } @Override public void visit(Mouse mouse) { System.out.println("Displaying Mouse."); } @Override public void visit(Keyboard keyboard) { System.out.println("Displaying Keyboard."); } @Override public void visit(Monitor monitor) { System.out.println("Displaying Monitor."); } }
Output
Verify the output.
Displaying Mouse. Displaying Keyboard. Displaying Monitor. Displaying Computer.
Design Patterns - Null Object Pattern
In Null Object pattern, a null object replaces check of NULL object instance. Instead of putting if check for a null value, Null Object reflects a do nothing relationship. Such Null object can also be used to provide default behaviour in case data is not available.
In Null Object pattern, we create an abstract class specifying various operations to be done, concrete classes extending this class and a null object class providing do nothing implemention of this class and will be used seemlessly where we need to check null value.
Implementation
We are going to create a AbstractCustomer abstract class defining opearations. Here the name of the customer and concrete classes extending the AbstractCustomer class. A factory class CustomerFactory is created to return either RealCustomer or NullCustomer objects based on the name of customer passed to it.
NullPatternDemo, our demo class, will use CustomerFactory to demonstrate the use of Null Object pattern.

Step 1
Create an abstract class.
AbstractCustomer.java
package com.tutorialspoint; public abstract class AbstractCustomer { protected String name; public abstract boolean isNil(); public abstract String getName(); }
Step 2
Create concrete classes extending the above class.
RealCustomer.java
package com.tutorialspoint; public class RealCustomer extends AbstractCustomer { public RealCustomer(String name) { this.name = name; } @Override public String getName() { return name; } @Override public boolean isNil() { return false; } }
NullCustomer.java
package com.tutorialspoint; public class NullCustomer extends AbstractCustomer { @Override public String getName() { return "Not Available in Customer Database"; } @Override public boolean isNil() { return true; } }
Step 3
Create CustomerFactory Class.
CustomerFactory.java
package com.tutorialspoint; public class CustomerFactory { public static final String[] names = {"Rob", "Joe", "Julie"}; public static AbstractCustomer getCustomer(String name){ for (int i = 0; i < names.length; i++) { if (names[i].equalsIgnoreCase(name)){ return new RealCustomer(name); } } return new NullCustomer(); } }
Example - Usage of Null Object Pattern
Use the CustomerFactory to get either RealCustomer or NullCustomer objects based on the name of customer passed to it.
NullPatternDemo.java
package com.tutorialspoint; public class NullPatternDemo { public static void main(String[] args) { AbstractCustomer customer1 = CustomerFactory.getCustomer("Rob"); AbstractCustomer customer2 = CustomerFactory.getCustomer("Bob"); AbstractCustomer customer3 = CustomerFactory.getCustomer("Julie"); AbstractCustomer customer4 = CustomerFactory.getCustomer("Laura"); System.out.println("Customers"); System.out.println(customer1.getName()); System.out.println(customer2.getName()); System.out.println(customer3.getName()); System.out.println(customer4.getName()); } } abstract class AbstractCustomer { protected String name; public abstract boolean isNil(); public abstract String getName(); } class RealCustomer extends AbstractCustomer { public RealCustomer(String name) { this.name = name; } @Override public String getName() { return name; } @Override public boolean isNil() { return false; } } class NullCustomer extends AbstractCustomer { @Override public String getName() { return "Not Available in Customer Database"; } @Override public boolean isNil() { return true; } } class CustomerFactory { public static final String[] names = {"Rob", "Joe", "Julie"}; public static AbstractCustomer getCustomer(String name){ for (int i = 0; i < names.length; i++) { if (names[i].equalsIgnoreCase(name)){ return new RealCustomer(name); } } return new NullCustomer(); } }
Output
Verify the output.
Customers Rob Not Available in Customer Database Julie Not Available in Customer Database
Design Patterns - MVC Pattern
Overview
MVC Pattern stands for Model-View-Controller Pattern. This pattern is used to separate application's concerns.
Model - Model represents an object or JAVA POJO carrying data. It can also have logic to update controller if its data changes.
View - View represents the visualization of the data that model contains.
Controller - Controller acts on both model and view. It controls the data flow into model object and updates the view whenever data changes. It keeps view and model separate.
Implementation
We are going to create a Student object acting as a model.StudentView will be a view class which can print student details on console and StudentController is the controller class responsible to store data in Student object and update view StudentView accordingly.
MVCPatternDemo, our demo class, will use StudentController to demonstrate use of MVC pattern.

Step 1
Create Model.
Student.java
package com.tutorialspoint; public class Student { private String rollNo; private String name; public String getRollNo() { return rollNo; } public void setRollNo(String rollNo) { this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } }
Step 2
Create View.
StudentView.java
package com.tutorialspoint; public class StudentView { public void printStudentDetails(String studentName, String studentRollNo){ System.out.println("Student: "); System.out.println("Name: " + studentName); System.out.println("Roll No: " + studentRollNo); } }
Step 3
Create Controller.
StudentController.java
package com.tutorialspoint; public class StudentController { private Student model; private StudentView view; public StudentController(Student model, StudentView view){ this.model = model; this.view = view; } public void setStudentName(String name){ model.setName(name); } public String getStudentName(){ return model.getName(); } public void setStudentRollNo(String rollNo){ model.setRollNo(rollNo); } public String getStudentRollNo(){ return model.getRollNo(); } public void updateView(){ view.printStudentDetails(model.getName(), model.getRollNo()); } }
Example - Usage of MVC Design Pattern
Use the StudentController methods to demonstrate MVC design pattern usage.
MVCPatternDemo.java
package com.tutorialspoint; public class MVCPatternDemo { public static void main(String[] args) { //fetch student record based on his roll no from the database Student model = retriveStudentFromDatabase(); //Create a view : to write student details on console StudentView view = new StudentView(); StudentController controller = new StudentController(model, view); controller.updateView(); //update model data controller.setStudentName("John"); controller.updateView(); } private static Student retriveStudentFromDatabase(){ Student student = new Student(); student.setName("Robert"); student.setRollNo("10"); return student; } } class Student { private String rollNo; private String name; public String getRollNo() { return rollNo; } public void setRollNo(String rollNo) { this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } } class StudentView { public void printStudentDetails(String studentName, String studentRollNo){ System.out.println("Student: "); System.out.println("Name: " + studentName); System.out.println("Roll No: " + studentRollNo); } } class StudentController { private Student model; private StudentView view; public StudentController(Student model, StudentView view){ this.model = model; this.view = view; } public void setStudentName(String name){ model.setName(name); } public String getStudentName(){ return model.getName(); } public void setStudentRollNo(String rollNo){ model.setRollNo(rollNo); } public String getStudentRollNo(){ return model.getRollNo(); } public void updateView(){ view.printStudentDetails(model.getName(), model.getRollNo()); } }
Output
Verify the output.
Student: Name: Robert Roll No: 10 Student: Name: John Roll No: 10
Design Patterns - Business Delegate Pattern
Overview
Business Delegate Pattern is used to decouple presentation tier and business tier. It is basically use to reduce communication or remote lookup functionality to business tier code in presentation tier code. In business tier we have following entities.
Client - Presentation tier code may be JSP, servlet or UI java code.
Business Delegate - A single entry point class for client entities to provide access to Business Service methods.
LookUp Service - Lookup service object is responsible to get relative business implementation and provide business object access to business delegate object.
Business Service - Business Service interface. Concrete classes implement this business service to provide actual business implementation logic.
Implementation
We are going to create a Client, BusinessDelegate, BusinessService, LookUpService, JMSService and EJBService representing various entities of Business Delegate patterns.
BusinessDelegatePatternDemo, our demo class, will use BusinessDelegate and Client to demonstrate use of Business Delegate pattern.

Step 1
Create BusinessService Interface.
BusinessService.java
package com.tutorialspoint; public interface BusinessService { public void doProcessing(); }
Step 2
Create concrete Service classes.
EJBService.java
package com.tutorialspoint; public class EJBService implements BusinessService { @Override public void doProcessing() { System.out.println("Processing task by invoking EJB Service"); } }
JMSService.java
package com.tutorialspoint; public class JMSService implements BusinessService { @Override public void doProcessing() { System.out.println("Processing task by invoking JMS Service"); } }
Step 3
Create Business Lookup Service.
BusinessLookUp.java
package com.tutorialspoint; public class BusinessLookUp { public BusinessService getBusinessService(String serviceType){ if(serviceType.equalsIgnoreCase("EJB")){ return new EJBService(); } else { return new JMSService(); } } }
Step 4
Create Business Delegate.
BusinessDelegate.java
package com.tutorialspoint; public class BusinessDelegate { private BusinessLookUp lookupService = new BusinessLookUp(); private BusinessService businessService; private String serviceType; public void setServiceType(String serviceType){ this.serviceType = serviceType; } public void doTask(){ businessService = lookupService.getBusinessService(serviceType); businessService.doProcessing(); } }
Step 5
Create Client.
Client.java
package com.tutorialspoint; public class Client { BusinessDelegate businessService; public Client(BusinessDelegate businessService){ this.businessService = businessService; } public void doTask(){ businessService.doTask(); } }
Example - Usage of Business Delegate Pattern
Use BusinessDelegate and Client classes to demonstrate Business Delegate pattern.
BusinessDelegatePatternDemo.java
package com.tutorialspoint; public class BusinessDelegatePatternDemo { public static void main(String[] args) { BusinessDelegate businessDelegate = new BusinessDelegate(); businessDelegate.setServiceType("EJB"); Client client = new Client(businessDelegate); client.doTask(); businessDelegate.setServiceType("JMS"); client.doTask(); } } interface BusinessService { public void doProcessing(); } class EJBService implements BusinessService { @Override public void doProcessing() { System.out.println("Processing task by invoking EJB Service"); } } class JMSService implements BusinessService { @Override public void doProcessing() { System.out.println("Processing task by invoking JMS Service"); } } class BusinessLookUp { public BusinessService getBusinessService(String serviceType){ if(serviceType.equalsIgnoreCase("EJB")){ return new EJBService(); } else { return new JMSService(); } } } class BusinessDelegate { private BusinessLookUp lookupService = new BusinessLookUp(); private BusinessService businessService; private String serviceType; public void setServiceType(String serviceType){ this.serviceType = serviceType; } public void doTask(){ businessService = lookupService.getBusinessService(serviceType); businessService.doProcessing(); } } class Client { BusinessDelegate businessService; public Client(BusinessDelegate businessService){ this.businessService = businessService; } public void doTask(){ businessService.doTask(); } }
Output
Verify the output.
Processing task by invoking EJB Service Processing task by invoking JMS Service
Design Patterns - Composite Entity Pattern
Overview
Composite Entity pattern is used in EJB persistence mechanism. A Composite entity is an EJB entity bean which represents a graph of objects. When a composite entity is updated, internally dependent objects beans get updated automatically as being managed by EJB entity bean. Following are the participants in Composite Entity Bean.
Composite Entity - It is primary entity bean. It can be coarse grained or can contain a coarse grained object to be used for persistence purpose.
Coarse-Grained Object - This object contains dependent objects. It has its own life cycle and also manages life cycle of dependent objects.
Dependent Object - Dependent object is an object which depends on coarse grained object for its persistence lifecycle.
Strategies - Strategies represents how to implement a Composite Entity.
Implementation
We are going to create CompositeEntity object acting as CompositeEntity. CoarseGrainedObject will be a class which contains dependent objects. CompositeEntityPatternDemo, our demo class will use Client class to demonstrate use of Composite Entity pattern.

Step 1
Create Dependent Objects.
DependentObject1.java
package com.tutorialspoint; public class DependentObject1 { private String data; public void setData(String data){ this.data = data; } public String getData(){ return data; } }
DependentObject2.java
package com.tutorialspoint; public class DependentObject2 { private String data; public void setData(String data){ this.data = data; } public String getData(){ return data; } }
Step 2
Create Coarse Grained Object.
CoarseGrainedObject.java
package com.tutorialspoint; public class CoarseGrainedObject { DependentObject1 do1 = new DependentObject1(); DependentObject2 do2 = new DependentObject2(); public void setData(String data1, String data2){ do1.setData(data1); do2.setData(data2); } public String[] getData(){ return new String[] {do1.getData(),do2.getData()}; } }
Step 3
Create Composite Entity.
CompositeEntity.java
package com.tutorialspoint; public class CompositeEntity { private CoarseGrainedObject cgo = new CoarseGrainedObject(); public void setData(String data1, String data2){ cgo.setData(data1, data2); } public String[] getData(){ return cgo.getData(); } }
Step 4
Create Client class to use Composite Entity.
Client.java
package com.tutorialspoint; public class Client { private CompositeEntity compositeEntity = new CompositeEntity(); public void printData(){ for (int i = 0; i < compositeEntity.getData().length; i++) { System.out.println("Data: " + compositeEntity.getData()[i]); } } public void setData(String data1, String data2){ compositeEntity.setData(data1, data2); } }
Example - Usage of Composite Entity Pattern
Use the Client to demonstrate Composite Entity design pattern usage.
CompositeEntityPatternDemo.java
package com.tutorialspoint; public class CompositeEntityPatternDemo { public static void main(String[] args) { Client client = new Client(); client.setData("Test", "Data"); client.printData(); client.setData("Second Test", "Data1"); client.printData(); } } class DependentObject1 { private String data; public void setData(String data){ this.data = data; } public String getData(){ return data; } } class DependentObject2 { private String data; public void setData(String data){ this.data = data; } public String getData(){ return data; } } class CoarseGrainedObject { DependentObject1 do1 = new DependentObject1(); DependentObject2 do2 = new DependentObject2(); public void setData(String data1, String data2){ do1.setData(data1); do2.setData(data2); } public String[] getData(){ return new String[] {do1.getData(),do2.getData()}; } } class CompositeEntity { private CoarseGrainedObject cgo = new CoarseGrainedObject(); public void setData(String data1, String data2){ cgo.setData(data1, data2); } public String[] getData(){ return cgo.getData(); } } class Client { private CompositeEntity compositeEntity = new CompositeEntity(); public void printData(){ for (int i = 0; i < compositeEntity.getData().length; i++) { System.out.println("Data: " + compositeEntity.getData()[i]); } } public void setData(String data1, String data2){ compositeEntity.setData(data1, data2); } }
Output
Verify the output.
Data: Test Data: Data Data:Second Test Data: Data1
Data Access Object Pattern
Overview
Data Access Object Pattern or DAO pattern is used to separate low level data accessing API or operations from high level business services. Following are the participants in Data Access Object Pattern.
Data Access Object Interface - This interface defines the standard operations to be performed on a model object(s).
Data Access Object concrete class - This class implements above interface. This class is responsible to get data from a data source which can be database / xml or any other storage mechanism.
Model Object or Value Object - This object is simple POJO containing get/set methods to store data retrieved using DAO class.
Implementation
We are going to create a Student object acting as a Model or Value Object.StudentDao is Data Access Object Interface.StudentDaoImpl is concrete class implementing Data Access Object Interface. DaoPatternDemo, our demo class, will use StudentDao to demonstrate the use of Data Access Object pattern.

Step 1
Create Value Object.
Student.java
package com.tutorialspoint; public class Student { private String name; private int rollNo; Student(String name, int rollNo){ this.name = name; this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getRollNo() { return rollNo; } public void setRollNo(int rollNo) { this.rollNo = rollNo; } }
Step 2
Create Data Access Object Interface.
StudentDao.java
package com.tutorialspoint; import java.util.List; public interface StudentDao { public List<Student> getAllStudents(); public Student getStudent(int rollNo); public void updateStudent(Student student); public void deleteStudent(Student student); }
Step 3
Create concrete class implementing above interface.
StudentDaoImpl.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class StudentDaoImpl implements StudentDao { //list is working as a database List<Student> students; public StudentDaoImpl(){ students = new ArrayList<Student>(); Student student1 = new Student("Robert",0); Student student2 = new Student("John",1); students.add(student1); students.add(student2); } @Override public void deleteStudent(Student student) { students.remove(student.getRollNo()); System.out.println("Student: Roll No " + student.getRollNo() + ", deleted from database"); } //retrive list of students from the database @Override public List<Student> getAllStudents() { return students; } @Override public Student getStudent(int rollNo) { return students.get(rollNo); } @Override public void updateStudent(Student student) { students.get(student.getRollNo()).setName(student.getName()); System.out.println("Student: Roll No " + student.getRollNo() + ", updated in the database"); } }
Example - Usage of Data Access Object Pattern
Use the StudentDao to demonstrate Data Access Object pattern usage.
DaoPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class DaoPatternDemo { public static void main(String[] args) { StudentDao studentDao = new StudentDaoImpl(); //print all students for (Student student : studentDao.getAllStudents()) { System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : " + student.getName() + " ]"); } //update student Student student =studentDao.getAllStudents().get(0); student.setName("Michael"); studentDao.updateStudent(student); //get the student studentDao.getStudent(0); System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : " + student.getName() + " ]"); } } class Student { private String name; private int rollNo; Student(String name, int rollNo){ this.name = name; this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getRollNo() { return rollNo; } public void setRollNo(int rollNo) { this.rollNo = rollNo; } } interface StudentDao { public List<Student> getAllStudents(); public Student getStudent(int rollNo); public void updateStudent(Student student); public void deleteStudent(Student student); } class StudentDaoImpl implements StudentDao { //list is working as a database List<Student> students; public StudentDaoImpl(){ students = new ArrayList<Student>(); Student student1 = new Student("Robert",0); Student student2 = new Student("John",1); students.add(student1); students.add(student2); } @Override public void deleteStudent(Student student) { students.remove(student.getRollNo()); System.out.println("Student: Roll No " + student.getRollNo() + ", deleted from database"); } //retrive list of students from the database @Override public List<Student> getAllStudents() { return students; } @Override public Student getStudent(int rollNo) { return students.get(rollNo); } @Override public void updateStudent(Student student) { students.get(student.getRollNo()).setName(student.getName()); System.out.println("Student: Roll No " + student.getRollNo() + ", updated in the database"); } }
Output
Verify the output.
Student: [RollNo : 0, Name : Robert ] Student: [RollNo : 1, Name : John ] Student: Roll No 0, updated in the database Student: [RollNo : 0, Name : Michael ]
Design Pattern - Front Controller Pattern
Overview
The front controller design pattern is used to provide a centralized request handling mechanism so that all requests will be handled by a single handler. This handler can do the authentication/ authorization/ logging or tracking of request and then pass the requests to corresponding handlers. Following are the entities of this type of design pattern.
Front Controller - Single handler for all kinds of requests coming to the application (either web based/ desktop based).
Dispatcher - Front Controller may use a dispatcher object which can dispatch the request to corresponding specific handler.
View - Views are the object for which the requests are made.
Implementation
We are going to create a FrontController and Dispatcher to act as Front Controller and Dispatcher correspondingly. HomeView and StudentView represent various views for which requests can come to front controller.
FrontControllerPatternDemo, our demo class, will use FrontController to demonstrate Front Controller Design Pattern.

Step 1
Create Views.
HomeView.java
package com.tutorialspoint; public class HomeView { public void show(){ System.out.println("Displaying Home Page"); } }
StudentView.java
package com.tutorialspoint; public class StudentView { public void show(){ System.out.println("Displaying Student Page"); } }
Step 2
Create Dispatcher.
Dispatcher.java
package com.tutorialspoint; public class Dispatcher { private StudentView studentView; private HomeView homeView; public Dispatcher(){ studentView = new StudentView(); homeView = new HomeView(); } public void dispatch(String request){ if(request.equalsIgnoreCase("STUDENT")){ studentView.show(); } else{ homeView.show(); } } }
Step 3
Create FrontController
FrontController.java
package com.tutorialspoint; public class FrontController { private Dispatcher dispatcher; public FrontController(){ dispatcher = new Dispatcher(); } private boolean isAuthenticUser(){ System.out.println("User is authenticated successfully."); return true; } private void trackRequest(String request){ System.out.println("Page requested: " + request); } public void dispatchRequest(String request){ //log each request trackRequest(request); //authenticate the user if(isAuthenticUser()){ dispatcher.dispatch(request); } } }
Example - Usage of Front Controller Pattern
Use the FrontController to demonstrate Front Controller Design Pattern.
FrontControllerPatternDemo.java
package com.tutorialspoint; public class FrontControllerPatternDemo { public static void main(String[] args) { FrontController frontController = new FrontController(); frontController.dispatchRequest("HOME"); frontController.dispatchRequest("STUDENT"); } } class HomeView { public void show(){ System.out.println("Displaying Home Page"); } } class StudentView { public void show(){ System.out.println("Displaying Student Page"); } } class Dispatcher { private StudentView studentView; private HomeView homeView; public Dispatcher(){ studentView = new StudentView(); homeView = new HomeView(); } public void dispatch(String request){ if(request.equalsIgnoreCase("STUDENT")){ studentView.show(); } else{ homeView.show(); } } } class FrontController { private Dispatcher dispatcher; public FrontController(){ dispatcher = new Dispatcher(); } private boolean isAuthenticUser(){ System.out.println("User is authenticated successfully."); return true; } private void trackRequest(String request){ System.out.println("Page requested: " + request); } public void dispatchRequest(String request){ //log each request trackRequest(request); //authenticate the user if(isAuthenticUser()){ dispatcher.dispatch(request); } } }
Output
Verify the output.
Page requested: HOME User is authenticated successfully. Displaying Home Page Page requested: STUDENT User is authenticated successfully. Displaying Student Page
Design Pattern - Intercepting Filter Pattern
Overview
The intercepting filter design pattern is used when we want to do some pre-processing / post-processing with request or response of the application. Filters are defined and applied on the request before passing the request to actual target application. Filters can do the authentication/ authorization/ logging or tracking of request and then pass the requests to corresponding handlers. Following are the entities of this type of design pattern.
Filter - Filter which will performs certain task prior or after execution of request by request handler.
Filter Chain - Filter Chain carries multiple filters and help to execute them in defined order on target.
Target - Target object is the request handler
Filter Manager - Filter Manager manages the filters and Filter Chain.
Client - Client is the object who sends request to the Target object.
Implementation
We are going to create a FilterChain,FilterManager, Target, Client as various objects representing our entities.AuthenticationFilter and DebugFilter represent concrete filters.
InterceptingFilterDemo, our demo class, will use Client to demonstrate Intercepting Filter Design Pattern.

Step 1
Create Filter interface.
Filter.java
package com.tutorialspoint; public interface Filter { public void execute(String request); }
Step 2
Create concrete filters.
AuthenticationFilter.java
package com.tutorialspoint; public class AuthenticationFilter implements Filter { public void execute(String request){ System.out.println("Authenticating request: " + request); } }
DebugFilter.java
package com.tutorialspoint; public class DebugFilter implements Filter { public void execute(String request){ System.out.println("request log: " + request); } }
Step 3
Create Target
Target.java
package com.tutorialspoint; public class Target { public void execute(String request){ System.out.println("Executing request: " + request); } }
Step 4
Create Filter Chain
FilterChain.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class FilterChain { private List<Filter> filters = new ArrayList<Filter>(); private Target target; public void addFilter(Filter filter){ filters.add(filter); } public void execute(String request){ for (Filter filter : filters) { filter.execute(request); } target.execute(request); } public void setTarget(Target target){ this.target = target; } }
Step 5
Create Filter Manager
FilterManager.java
package com.tutorialspoint; public class FilterManager { FilterChain filterChain; public FilterManager(Target target){ filterChain = new FilterChain(); filterChain.setTarget(target); } public void setFilter(Filter filter){ filterChain.addFilter(filter); } public void filterRequest(String request){ filterChain.execute(request); } }
Step 6
Create Client
Client.java
package com.tutorialspoint; public class Client { FilterManager filterManager; public void setFilterManager(FilterManager filterManager){ this.filterManager = filterManager; } public void sendRequest(String request){ filterManager.filterRequest(request); } }
Example - Usage of Intercepting Filter Pattern
Use the Client to demonstrate Intercepting Filter Design Pattern.
InterceptingFilterDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class InterceptingFilterPatternDemo { public static void main(String[] args) { FilterManager filterManager = new FilterManager(new Target()); filterManager.setFilter(new AuthenticationFilter()); filterManager.setFilter(new DebugFilter()); Client client = new Client(); client.setFilterManager(filterManager); client.sendRequest("HOME"); } } interface Filter { public void execute(String request); } class AuthenticationFilter implements Filter { public void execute(String request){ System.out.println("Authenticating request: " + request); } } class DebugFilter implements Filter { public void execute(String request){ System.out.println("request log: " + request); } } class Target { public void execute(String request){ System.out.println("Executing request: " + request); } } class FilterChain { private List<Filter> filters = new ArrayList<Filter>(); private Target target; public void addFilter(Filter filter){ filters.add(filter); } public void execute(String request){ for (Filter filter : filters) { filter.execute(request); } target.execute(request); } public void setTarget(Target target){ this.target = target; } } class FilterManager { FilterChain filterChain; public FilterManager(Target target){ filterChain = new FilterChain(); filterChain.setTarget(target); } public void setFilter(Filter filter){ filterChain.addFilter(filter); } public void filterRequest(String request){ filterChain.execute(request); } } class Client { FilterManager filterManager; public void setFilterManager(FilterManager filterManager){ this.filterManager = filterManager; } public void sendRequest(String request){ filterManager.filterRequest(request); } }
Output
Verify the output.
Authenticating request: HOME request log: HOME Executing request: HOME
Design Pattern - Service Locator Pattern
Overview
The service locator design pattern is used when we want to locate various services using JNDI lookup. Considering high cost of looking up JNDI for a service, Service Locator pattern makes use of caching technique. For the first time a service is required, Service Locator looks up in JNDI and caches the service object. Further lookup or same service via Service Locator is done in its cache which improves the performance of application to great extent. Following are the entities of this type of design pattern.
Service - Actual Service which will process the request. Reference of such service is to be looked upon in JNDI server.
Context / Initial Context - JNDI Context carries the reference to service used for lookup purpose.
Service Locator - Service Locator is a single point of contact to get services by JNDI lookup caching the services.
Cache - Cache to store references of services to reuse them
Client - Client is the object that invokes the services via ServiceLocator.
Implementation
We are going to create a ServiceLocator,InitialContext, Cache, Service as various objects representing our entities.Service1 and Service2 represent concrete services.
ServiceLocatorPatternDemo, our demo class, is acting as a client here and will use ServiceLocator to demonstrate Service Locator Design Pattern.

Step 1
Create Service interface.
Service.java
package com.tutorialspoint; public interface Service { public String getName(); public void execute(); }
Step 2
Create concrete services.
Service1.java
package com.tutorialspoint; public class Service1 implements Service { public void execute(){ System.out.println("Executing Service1"); } @Override public String getName() { return "Service1"; } }
Service2.java
package com.tutorialspoint; public class Service2 implements Service { public void execute(){ System.out.println("Executing Service2"); } @Override public String getName() { return "Service2"; } }
Step 3
Create InitialContext for JNDI lookup
InitialContext.java
package com.tutorialspoint; public class InitialContext { public Object lookup(String jndiName){ if(jndiName.equalsIgnoreCase("SERVICE1")){ System.out.println("Looking up and creating a new Service1 object"); return new Service1(); } else if (jndiName.equalsIgnoreCase("SERVICE2")){ System.out.println("Looking up and creating a new Service2 object"); return new Service2(); } return null; } }
Step 4
Create Cache
Cache.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class Cache { private List<Service> services; public Cache(){ services = new ArrayList<Service>(); } public Service getService(String serviceName){ for (Service service : services) { if(service.getName().equalsIgnoreCase(serviceName)){ System.out.println("Returning cached " + serviceName + " object"); return service; } } return null; } public void addService(Service newService){ boolean exists = false; for (Service service : services) { if(service.getName().equalsIgnoreCase(newService.getName())){ exists = true; } } if(!exists){ services.add(newService); } } }
Step 5
Create Service Locator
ServiceLocator.java
package com.tutorialspoint; public class ServiceLocator { private static Cache cache; static { cache = new Cache(); } public static Service getService(String jndiName){ Service service = cache.getService(jndiName); if(service != null){ return service; } InitialContext context = new InitialContext(); Service service1 = (Service)context.lookup(jndiName); cache.addService(service1); return service1; } }
Example - Usage of Service Locator Pattern
Use the ServiceLocator to demonstrate Service Locator Design Pattern.
ServiceLocatorPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class ServiceLocatorPatternDemo { public static void main(String[] args) { Service service = ServiceLocator.getService("Service1"); service.execute(); service = ServiceLocator.getService("Service2"); service.execute(); service = ServiceLocator.getService("Service1"); service.execute(); service = ServiceLocator.getService("Service2"); service.execute(); } } interface Service { public String getName(); public void execute(); } class Service1 implements Service { public void execute(){ System.out.println("Executing Service1"); } @Override public String getName() { return "Service1"; } } class Service2 implements Service { public void execute(){ System.out.println("Executing Service2"); } @Override public String getName() { return "Service2"; } } class InitialContext { public Object lookup(String jndiName){ if(jndiName.equalsIgnoreCase("SERVICE1")){ System.out.println("Looking up and creating a new Service1 object"); return new Service1(); } else if (jndiName.equalsIgnoreCase("SERVICE2")){ System.out.println("Looking up and creating a new Service2 object"); return new Service2(); } return null; } } class Cache { private List<Service> services; public Cache(){ services = new ArrayList<Service>(); } public Service getService(String serviceName){ for (Service service : services) { if(service.getName().equalsIgnoreCase(serviceName)){ System.out.println("Returning cached " + serviceName + " object"); return service; } } return null; } public void addService(Service newService){ boolean exists = false; for (Service service : services) { if(service.getName().equalsIgnoreCase(newService.getName())){ exists = true; } } if(!exists){ services.add(newService); } } } class ServiceLocator { private static Cache cache; static { cache = new Cache(); } public static Service getService(String jndiName){ Service service = cache.getService(jndiName); if(service != null){ return service; } InitialContext context = new InitialContext(); Service service1 = (Service)context.lookup(jndiName); cache.addService(service1); return service1; } }
Output
Verify the output.
Looking up and creating a new Service1 object Executing Service1 Looking up and creating a new Service2 object Executing Service2 Returning cached Service1 object Executing Service1 Returning cached Service2 object Executing Service2
Design Pattern - Transfer Object Pattern
Overview
The Transfer Object pattern is used when we want to pass data with multiple attributes in one shot from client to server. Transfer object is also known as Value Object. Transfer Object is a simple POJO class having getter/setter methods and is serializable so that it can be transferred over the network. It does not have any behavior. Server Side business class normally fetches data from the database and fills the POJO and send it to the client or pass it by value. For client, transfer object is read-only. Client can create its own transfer object and pass it to server to update values in database in one shot. Following are the entities of this type of design pattern.
Business Object - Business Service fills the Transfer Object with data.
Transfer Object - Simple POJO having methods to set/get attributes only.
Client - Client either requests or sends the Transfer Object to Business Object.
Implementation
We are going to create a StudentBO as Business Object,Student as Transfer Object representing our entities.
TransferObjectPatternDemo, our demo class, is acting as a client here and will use StudentBO and Student to demonstrate Transfer Object Design Pattern.

Step 1
Create Transfer Object.
StudentVO.java
package com.tutorialspoint; public class StudentVO { private String name; private int rollNo; StudentVO(String name, int rollNo){ this.name = name; this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getRollNo() { return rollNo; } public void setRollNo(int rollNo) { this.rollNo = rollNo; } }
Step 2
Create Business Object.
StudentBO.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class StudentBO { //list is working as a database List<StudentVO> students; public StudentBO(){ students = new ArrayList<StudentVO>(); StudentVO student1 = new StudentVO("Robert",0); StudentVO student2 = new StudentVO("John",1); students.add(student1); students.add(student2); } public void deleteStudent(StudentVO student) { students.remove(student.getRollNo()); System.out.println("Student: Roll No " + student.getRollNo() + ", deleted from database"); } //retrive list of students from the database public List<StudentVO> getAllStudents() { return students; } public StudentVO getStudent(int rollNo) { return students.get(rollNo); } public void updateStudent(StudentVO student) { students.get(student.getRollNo()).setName(student.getName()); System.out.println("Student: Roll No " + student.getRollNo() +", updated in the database"); } }
Example - Usage of Transfer Object Pattern
Use the StudentBO to demonstrate Transfer Object Design Pattern.
TransferObjectPatternDemo.java
package com.tutorialspoint; import java.util.ArrayList; import java.util.List; public class TransferObjectPatternDemo { public static void main(String[] args) { StudentBO studentBusinessObject = new StudentBO(); //print all students for (StudentVO student : studentBusinessObject.getAllStudents()) { System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : " + student.getName() + " ]"); } //update student StudentVO student = studentBusinessObject.getAllStudents().get(0); student.setName("Michael"); studentBusinessObject.updateStudent(student); //get the student student = studentBusinessObject.getStudent(0); System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : " + student.getName() + " ]"); } } class StudentVO { private String name; private int rollNo; StudentVO(String name, int rollNo){ this.name = name; this.rollNo = rollNo; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getRollNo() { return rollNo; } public void setRollNo(int rollNo) { this.rollNo = rollNo; } } class StudentBO { //list is working as a database List<StudentVO> students; public StudentBO(){ students = new ArrayList<StudentVO>(); StudentVO student1 = new StudentVO("Robert",0); StudentVO student2 = new StudentVO("John",1); students.add(student1); students.add(student2); } public void deleteStudent(StudentVO student) { students.remove(student.getRollNo()); System.out.println("Student: Roll No " + student.getRollNo() + ", deleted from database"); } //retrive list of students from the database public List<StudentVO> getAllStudents() { return students; } public StudentVO getStudent(int rollNo) { return students.get(rollNo); } public void updateStudent(StudentVO student) { students.get(student.getRollNo()).setName(student.getName()); System.out.println("Student: Roll No " + student.getRollNo() +", updated in the database"); } }
Output
Verify the output.
Student: [RollNo : 0, Name : Robert ] Student: [RollNo : 1, Name : John ] Student: Roll No 0, updated in the database Student: [RollNo : 0, Name : Michael ]