- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return a masked array containing the same data but with a new shape viewed as column-major order in Numpy
To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy. Give a new shape to the array without changing its data. The order is set using the "order" parameter. The 'F' order determines whether the array data should be viewed as in FORTRAN i.e. F (column-major).
The new shape should be compatible with the original shape. If an integer is supplied, then the result will be a 1-D array of that length.
The order determines whether the array data should be viewed as in C (row-major) or FORTRAN (column-major) order. Returns a masked array containing the same data, but with a new shape. The result is a view on the original array; if this is not possible, a ValueError is raised.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
Return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method. Give a new shape to the array without changing its data. The new shape of the masked array is set to 6x1 as a parameter. The new shape should be compatible with the original shape. If an integer is supplied, then the result will be a 1-D array of that length. The order is set using the "order" parameter. The 'F' order determines whether the array data should be viewed as in FORTRAN i.e. F (column-major) −
print("
Result...
",maskArr.reshape((6,1),order='F'))
Example
# Python ma.MaskedArray - Return a masked array containing the same data but with a new shape # viewed as column-major order import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[78, 85, 51], [56, 33, 97]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid # The masked array is 1x6 maskArr = ma.masked_array(arr, mask =[[0, 1, 0, 0, 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy # Give a new shape to the array without changing its data # The new shape of the masked array is set to 6x1 as a parameter # The new shape should be compatible with the original shape. # If an integer is supplied, then the result will be a 1-D array of that length # The order is set using the "order" parameter # The 'F' order determines whether the array data should be viewed as in FORTRAN i.e F (column-major) print("
Result...
",maskArr.reshape((6,1),order='F'))
Output
Array... [[78 85 51] [56 33 97]] Array type... int64 Array Dimensions... 2 Our Masked Array [[78 -- 51] [56 33 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result... [[78] [56] [--] [33] [51] [--]]